4,016 research outputs found

    Cross-Entropy Estimators for Sequential Experiment Design with Reinforcement Learning

    Full text link
    Reinforcement learning can effectively learn amortised design policies for designing sequences of experiments. However, current methods rely on contrastive estimators of expected information gain, which require an exponential number of contrastive samples to achieve an unbiased estimation. We propose an alternative lower bound estimator, based on the cross-entropy of the joint model distribution and a flexible proposal distribution. This proposal distribution approximates the true posterior of the model parameters given the experimental history and the design policy. Our estimator requires no contrastive samples, can achieve more accurate estimates of high information gains, allows learning of superior design policies, and is compatible with implicit probabilistic models. We assess our algorithm's performance in various tasks, including continuous and discrete designs and explicit and implicit likelihoods

    Closed-Loop Learning of Visual Control Policies

    Full text link
    In this paper we present a general, flexible framework for learning mappings from images to actions by interacting with the environment. The basic idea is to introduce a feature-based image classifier in front of a reinforcement learning algorithm. The classifier partitions the visual space according to the presence or absence of few highly informative local descriptors that are incrementally selected in a sequence of attempts to remove perceptual aliasing. We also address the problem of fighting overfitting in such a greedy algorithm. Finally, we show how high-level visual features can be generated when the power of local descriptors is insufficient for completely disambiguating the aliased states. This is done by building a hierarchy of composite features that consist of recursive spatial combinations of visual features. We demonstrate the efficacy of our algorithms by solving three visual navigation tasks and a visual version of the classical Car on the Hill control problem

    Constructing Parsimonious Analytic Models for Dynamic Systems via Symbolic Regression

    Full text link
    Developing mathematical models of dynamic systems is central to many disciplines of engineering and science. Models facilitate simulations, analysis of the system's behavior, decision making and design of automatic control algorithms. Even inherently model-free control techniques such as reinforcement learning (RL) have been shown to benefit from the use of models, typically learned online. Any model construction method must address the tradeoff between the accuracy of the model and its complexity, which is difficult to strike. In this paper, we propose to employ symbolic regression (SR) to construct parsimonious process models described by analytic equations. We have equipped our method with two different state-of-the-art SR algorithms which automatically search for equations that fit the measured data: Single Node Genetic Programming (SNGP) and Multi-Gene Genetic Programming (MGGP). In addition to the standard problem formulation in the state-space domain, we show how the method can also be applied to input-output models of the NARX (nonlinear autoregressive with exogenous input) type. We present the approach on three simulated examples with up to 14-dimensional state space: an inverted pendulum, a mobile robot, and a bipedal walking robot. A comparison with deep neural networks and local linear regression shows that SR in most cases outperforms these commonly used alternative methods. We demonstrate on a real pendulum system that the analytic model found enables a RL controller to successfully perform the swing-up task, based on a model constructed from only 100 data samples

    Indirect Methods for Robot Skill Learning

    Get PDF
    Robot learning algorithms are appealing alternatives for acquiring rational robotic behaviors from data collected during the execution of tasks. Furthermore, most robot learning techniques are stated as isolated stages and focused on directly obtaining rational policies as a result of optimizing only performance measures of single tasks. However, formulating robotic skill acquisition processes in such a way have some disadvantages. For example, if the same skill has to be learned by different robots, independent learning processes should be carried out for acquiring exclusive policies for each robot. Similarly, if a robot has to learn diverse skills, the robot should acquire the policy for each task in separate learning processes, in a sequential order and commonly starting from scratch. In the same way, formulating the learning process in terms of only the performance measure, makes robots to unintentionally avoid situations that should not be repeated, but without any mechanism that captures the necessity of not repeating those wrong behaviors. In contrast, humans and other animals exploit their experience not only for improving the performance of the task they are currently executing, but for constructing indirectly multiple models to help them with that particular task and to generalize to new problems. Accordingly, the models and algorithms proposed in this thesis seek to be more data efficient and extract more information from the interaction data that is collected either from expert\u2019s demonstrations or the robot\u2019s own experience. The first approach encodes robotic skills with shared latent variable models, obtaining latent representations that can be transferred from one robot to others, therefore avoiding to learn the same task from scratch. The second approach learns complex rational policies by representing them as hierarchical models that can perform multiple concurrent tasks, and whose components are learned in the same learning process, instead of separate processes. Finally, the third approach uses the interaction data for learning two alternative and antagonistic policies that capture what to and not to do, and which influence the learning process in addition to the performance measure defined for the task

    Leveraging Demonstrations with Latent Space Priors

    Full text link
    Demonstrations provide insight into relevant state or action space regions, bearing great potential to boost the efficiency and practicality of reinforcement learning agents. In this work, we propose to leverage demonstration datasets by combining skill learning and sequence modeling. Starting with a learned joint latent space, we separately train a generative model of demonstration sequences and an accompanying low-level policy. The sequence model forms a latent space prior over plausible demonstration behaviors to accelerate learning of high-level policies. We show how to acquire such priors from state-only motion capture demonstrations and explore several methods for integrating them into policy learning on transfer tasks. Our experimental results confirm that latent space priors provide significant gains in learning speed and final performance. We benchmark our approach on a set of challenging sparse-reward environments with a complex, simulated humanoid, and on offline RL benchmarks for navigation and object manipulation. Videos, source code and pre-trained models are available at the corresponding project website at https://facebookresearch.github.io/latent-space-priors .Comment: Published in Transactions on Machine Learning Research (03/2023
    corecore