51 research outputs found

    On generalized LDPC codes for ultra reliable communication

    Get PDF
    Ultra reliable low latency communication (URLLC) is an important feature in future mobile communication systems, as they will require high data rates, large system capacity and massive device connectivity [11]. To meet such stringent requirements, many error-correction codes (ECC)s are being investigated; turbo codes, low density parity check (LDPC) codes, polar codes and convolutional codes [70, 92, 38], among many others. In this work, we present generalized low density parity check (GLDPC) codes as a promising candidate for URLLC. Our proposal is based on a novel class of GLDPC code ensembles, for which new analysis tools are proposed. We analyze the trade-o_ between coding rate and asymptotic performance of a class of GLDPC codes constructed by including a certain fraction of generalized constraint (GC) nodes in the graph. To incorporate both bounded distance (BD) and maximum likelihood (ML) decoding at GC nodes into our analysis without resorting to multi-edge type of degree distribution (DD)s, we propose the probabilistic peeling decoding (P-PD) algorithm, which models the decoding step at every GC node as an instance of a Bernoulli random variable with a successful decoding probability that depends on both the GC block code as well as its decoding algorithm. The P-PD asymptotic performance over the BEC can be efficiently predicted using standard techniques for LDPC codes such as Density evolution (DE) or the differential equation method. We demonstrate that the simulated P-PD performance accurately predicts the actual performance of the GLPDC code under ML decoding at GC nodes. We illustrate our analysis for GLDPC code ensembles with regular and irregular DDs. This design methodology is applied to construct practical codes for URLLC. To this end, we incorporate to our analysis the use of quasi-cyclic (QC) structures, to mitigate the code error floor and facilitate the code very large scale integration (VLSI) implementation. Furthermore, for the additive white Gaussian noise (AWGN) channel, we analyze the complexity and performance of the message passing decoder with various update rules (including standard full-precision sum product and min-sum algorithms) and quantization schemes. The block error rate (BLER) performance of the proposed GLDPC codes, combined with a complementary outer code, is shown to outperform a variety of state-of-the-art codes, for URLLC, including LDPC codes, polar codes, turbo codes and convolutional codes, at similar complexity rates.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Juan José Murillo Fuentes.- Secretario: Matilde Pilar Sánchez Fernández.- Vocal: Javier Valls Coquilla

    Bilayer Low-Density Parity-Check Codes for Decode-and-Forward in Relay Channels

    Full text link
    This paper describes an efficient implementation of binning for the relay channel using low-density parity-check (LDPC) codes. We devise bilayer LDPC codes to approach the theoretically promised rate of the decode-and-forward relaying strategy by incorporating relay-generated information bits in specially designed bilayer graphical code structures. While conventional LDPC codes are sensitively tuned to operate efficiently at a certain channel parameter, the proposed bilayer LDPC codes are capable of working at two different channel parameters and two different rates: that at the relay and at the destination. To analyze the performance of bilayer LDPC codes, bilayer density evolution is devised as an extension of the standard density evolution algorithm. Based on bilayer density evolution, a design methodology is developed for the bilayer codes in which the degree distribution is iteratively improved using linear programming. Further, in order to approach the theoretical decode-and-forward rate for a wide range of channel parameters, this paper proposes two different forms bilayer codes, the bilayer-expurgated and bilayer-lengthened codes. It is demonstrated that a properly designed bilayer LDPC code can achieve an asymptotic infinite-length threshold within 0.24 dB gap to the Shannon limits of two different channels simultaneously for a wide range of channel parameters. By practical code construction, finite-length bilayer codes are shown to be able to approach within a 0.6 dB gap to the theoretical decode-and-forward rate of the relay channel at a block length of 10510^5 and a bit-error probability (BER) of 10−410^{-4}. Finally, it is demonstrated that a generalized version of the proposed bilayer code construction is applicable to relay networks with multiple relays.Comment: Submitted to IEEE Trans. Info. Theor

    Superposition Mapping & Related Coding Techniques

    Get PDF
    Since Shannon's landmark paper in 1948, it has been known that the capacity of a Gaussian channel can be achieved if and only if the channel outputs are Gaussian. In the low signal-to-noise ratio (SNR) regime, conventional mapping schemes suffice for approaching the Shannon limit, while in the high SNR regime, these mapping schemes, which produce uniformly distributed symbols, are insufficient to achieve the capacity. To solve this problem, researchers commonly resort to the technique of signal shaping that mends the symbol distribution, which is originally uniform, into a Gaussian-like one. Superposition mapping (SM) refers to a class of mapping techniques which use linear superposition to load binary digits onto finite-alphabet symbols that are suitable for waveform transmission. Different from conventional mapping schemes, the output symbols of a superposition mapper can easily be made Gaussian-like, which effectively eliminates the necessity of active signal shaping. For this reason, superposition mapping is of great interest for theoretical research as well as for practical implementations. It is an attractive alternative to signal shaping for approaching the channel capacity in the high SNR regime. This thesis aims to provide a deep insight into the principles of superposition mapping and to derive guidelines for systems adopting it. Particularly, the influence of power allocation to the system performance, both w.r.t the achievable power efficiency and supportable bandwidth efficiency, is made clear. Considerable effort is spent on finding code structures that are matched to SM. It is shown that currently prevalent code design concepts, which are mostly derived for coded transmission with bijective uniform mapping, do not really fit with superposition mapping, which is often non-bijective and nonuniform. As the main contribution, a novel coding strategy called low-density hybrid-check (LDHC) coding is proposed. LDHC codes are optimal and universally applicable for SM with arbitrary type of power allocation
    • …
    corecore