6,975 research outputs found

    Automated reliability assessment for spectroscopic redshift measurements

    Get PDF
    We present a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function (PDF). We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process, and produce a redshift posterior PDF that will be the starting-point for ML algorithms to provide an automated assessment of a redshift reliability. As a use case, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification to describe different types of redshift PDFs, but due to the subjective definition of these flags, soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions, unlabelled data from preliminary mock simulations for the Euclid space mission are projected into this mapping to predict their redshift reliability labels.Comment: Submitted on 02 June 2017 (v1). Revised on 08 September 2017 (v2). Latest version 28 September 2017 (this version v3

    Classifiers With a Reject Option for Early Time-Series Classification

    Full text link
    Early classification of time-series data in a dynamic environment is a challenging problem of great importance in signal processing. This paper proposes a classifier architecture with a reject option capable of online decision making without the need to wait for the entire time series signal to be present. The main idea is to classify an odor/gas signal with an acceptable accuracy as early as possible. Instead of using posterior probability of a classifier, the proposed method uses the "agreement" of an ensemble to decide whether to accept or reject the candidate label. The introduced algorithm is applied to the bio-chemistry problem of odor classification to build a novel Electronic-Nose called Forefront-Nose. Experimental results on wind tunnel test-bed facility confirms the robustness of the forefront-nose compared to the standard classifiers from both earliness and recognition perspectives
    • …
    corecore