15,563 research outputs found

    CoupleNet: Coupling Global Structure with Local Parts for Object Detection

    Get PDF
    The region-based Convolutional Neural Network (CNN) detectors such as Faster R-CNN or R-FCN have already shown promising results for object detection by combining the region proposal subnetwork and the classification subnetwork together. Although R-FCN has achieved higher detection speed while keeping the detection performance, the global structure information is ignored by the position-sensitive score maps. To fully explore the local and global properties, in this paper, we propose a novel fully convolutional network, named as CoupleNet, to couple the global structure with local parts for object detection. Specifically, the object proposals obtained by the Region Proposal Network (RPN) are fed into the the coupling module which consists of two branches. One branch adopts the position-sensitive RoI (PSRoI) pooling to capture the local part information of the object, while the other employs the RoI pooling to encode the global and context information. Next, we design different coupling strategies and normalization ways to make full use of the complementary advantages between the global and local branches. Extensive experiments demonstrate the effectiveness of our approach. We achieve state-of-the-art results on all three challenging datasets, i.e. a mAP of 82.7% on VOC07, 80.4% on VOC12, and 34.4% on COCO. Codes will be made publicly available.Comment: Accepted by ICCV 201

    Exploring Context with Deep Structured models for Semantic Segmentation

    Full text link
    State-of-the-art semantic image segmentation methods are mostly based on training deep convolutional neural networks (CNNs). In this work, we proffer to improve semantic segmentation with the use of contextual information. In particular, we explore `patch-patch' context and `patch-background' context in deep CNNs. We formulate deep structured models by combining CNNs and Conditional Random Fields (CRFs) for learning the patch-patch context between image regions. Specifically, we formulate CNN-based pairwise potential functions to capture semantic correlations between neighboring patches. Efficient piecewise training of the proposed deep structured model is then applied in order to avoid repeated expensive CRF inference during the course of back propagation. For capturing the patch-background context, we show that a network design with traditional multi-scale image inputs and sliding pyramid pooling is very effective for improving performance. We perform comprehensive evaluation of the proposed method. We achieve new state-of-the-art performance on a number of challenging semantic segmentation datasets including NYUDv2NYUDv2, PASCALPASCAL-VOC2012VOC2012, CityscapesCityscapes, PASCALPASCAL-ContextContext, SUNSUN-RGBDRGBD, SIFTSIFT-flowflow, and KITTIKITTI datasets. Particularly, we report an intersection-over-union score of 77.877.8 on the PASCALPASCAL-VOC2012VOC2012 dataset.Comment: 16 pages. Accepted to IEEE T. Pattern Analysis & Machine Intelligence, 2017. Extended version of arXiv:1504.0101
    • …
    corecore