93 research outputs found

    A PROTOCOL SUITE FOR WIRELESS PERSONAL AREA NETWORKS

    Get PDF
    A Wireless Personal Area Network (WPAN) is an ad hoc network that consists of devices that surround an individual or an object. Bluetooth® technology is especially suitable for formation of WPANs due to the pervasiveness of devices with Bluetooth® chipsets, its operation in the unlicensed Industrial, Scientific, Medical (ISM) frequency band, and its interference resilience. Bluetooth® technology has great potential to become the de facto standard for communication between heterogeneous devices in WPANs. The piconet, which is the basic Bluetooth® networking unit, utilizes a Master/Slave (MS) configuration that permits only a single master and up to seven active slave devices. This structure limitation prevents Bluetooth® devices from directly participating in larger Mobile Ad Hoc Networks (MANETs) and Wireless Personal Area Networks (WPANs). In order to build larger Bluetooth® topologies, called scatternets, individual piconets must be interconnected. Since each piconet has a unique frequency hopping sequence, piconet interconnections are done by allowing some nodes, called bridges, to participate in more than one piconet. These bridge nodes divide their time between piconets by switching between Frequency Hopping (FH) channels and synchronizing to the piconet\u27s master. In this dissertation we address scatternet formation, routing, and security to make Bluetooth® scatternet communication feasible. We define criteria for efficient scatternet topologies, describe characteristics of different scatternet topology models as well as compare and contrast their properties, classify existing scatternet formation approaches based on the aforementioned models, and propose a distributed scatternet formation algorithm that efficiently forms a scatternet topology and is resilient to node failures. We propose a hybrid routing algorithm, using a bridge link agnostic approach, that provides on-demand discovery of destination devices by their address or by the services that devices provide to their peers, by extending the Service Discovery Protocol (SDP) to scatternets. We also propose a link level security scheme that provides secure communication between adjacent piconet masters, within what we call an Extended Scatternet Neighborhood (ESN)

    A survey on Bluetooth multi-hop networks

    Get PDF
    Bluetooth was firstly announced in 1998. Originally designed as cable replacement connecting devices in a point-to-point fashion its high penetration arouses interest in its ad-hoc networking potential. This ad-hoc networking potential of Bluetooth is advertised for years - but until recently no actual products were available and less than a handful of real Bluetooth multi-hop network deployments were reported. The turnaround was triggered by the release of the Bluetooth Low Energy Mesh Profile which is unquestionable a great achievement but not well suited for all use cases of multi-hop networks. This paper surveys the tremendous work done on Bluetooth multi-hop networks during the last 20 years. All aspects are discussed with demands for a real world Bluetooth multi-hop operation in mind. Relationships and side effects of different topics for a real world implementation are explained. This unique focus distinguishes this survey from existing ones. Furthermore, to the best of the authors’ knowledge this is the first survey consolidating the work on Bluetooth multi-hop networks for classic Bluetooth technology as well as for Bluetooth Low Energy. Another individual characteristic of this survey is a synopsis of real world Bluetooth multi-hop network deployment efforts. In fact, there are only four reports of a successful establishment of a Bluetooth multi-hop network with more than 30 nodes and only one of them was integrated in a real world application - namely a photovoltaic power plant. © 2019 The Author

    Message forwarding techniques in Bluetooth enabled opportunistic communication environment

    Get PDF
    These days, most of the mobile phones are smart enough with computer like intelligence and equipped with multiple communication technologies such as Bluetooth, wireless LAN, GPRS and GSM. Different communication medium on single device have unlocked the new horizon of communication means. Modern mobile phones are not only capable of using traditional way of communication via GSM or GPRS; but, also use wireless LANs using access points where available. Among these communication means, Bluetooth technology is very intriguing and unique in nature. Any two devices equipped with Bluetooth technology can communicate directly due to their unique IDs in the world. This is opposite to GSM or Wireless LAN technology; where devices are dependent on infrastructure of service providers and have to pay for their services. Due to continual advancement in the field of mobile technology, mobile ad-hoc network seems to be more realised than ever using Bluetooth. In traditional mobile ad-hoc networks (MANETs), before information sharing, devices have partial or full knowledge of routes to the destinations using ad-hoc routing protocols. This kind of communication can only be realised if nodes follow the certain pattern. However, in reality mobile ad-hoc networks are highly unpredictable, any node can join or leave network at any time, thus making them risky for effective communication. This issue is addressed by introducing new breed of ad-hoc networking, known as opportunistic networks. Opportunistic networking is a concept that is evolved from mobile ad-hoc networking. In opportunistic networks nodes have no prior knowledge of routes to intended destinations. Any node in the network can be used as potential forwarder with the exception of taking information one step closer to intended destination. The forwarding decision is based on the information gathered from the source node or encountering node. The opportunistic forwarding can only be achieved if message forwarding is carried out in store and forward fashion. Although, opportunistic networks are more flexible than traditional MANETs, however, due to little insight of network, it poses distinct challenges such as intermittent connectivity, variable delays, short connection duration and dynamic topology. Addressing these challenges in opportunistic network is the basis for developing new and efficient protocols for information sharing. The aim of this research is to design different routing/forwarding techniques for opportunistic networks to improve the overall message delivery at destinations while keeping the communication cost very low. Some assumptions are considered to improved directivity of message flow towards intended destinations. These assumptions exploit human social relationships analogies, approximate awareness of the location of nodes in the network and use of hybrid communication by combining several routing concept to gain maximum message directivity. Enhancement in message forwarding in opportunistic networks can be achieved by targeting key nodes that show high degree of influence, popularity or knowledge inside the network. Based on this observation, this thesis presents an improved version of Lobby Influence (LI) algorithm called as Enhanced Lobby Influence (ELI). In LI, the forwarding decision is based on two important factors, popularity of node and popularity of node’s neighbour. The forwarding decision of Enhanced Lobby Influence not only depends on the intermediate node selection criteria as defined in Lobby Influence but also based on the knowledge of previously direct message delivery of intended destination. An improvement can be observed if nodes are aware of approximate position of intended destinations by some communication means such as GPS, GSM or WLAN access points. With the knowledge of nodes position in the network, high message directivity can be achieved by using simple concepts of direction vectors. Based on this observation, this research presents another new algorithm named as Location-aware opportunistic content forwarding (LOC). Last but not least, this research presents an orthodox yet unexplored approach for efficient message forwarding in Bluetooth communication environment, named as Hybrid Content Forwarding (HCF). The new approach combines the characteristics of social centrality based forwarding techniques used in opportunistic networks with traditional MANETs protocols used in Bluetooth scatternets. Simulation results show that a significant increase in delivery radio and cost reduction during content forwarding is observed by deploying these proposed algorithms. Also, comparison with existing technique shows the efficiency of using the new schemes

    Low Power Multi-Hop Networking Analysis in Intelligent Environments

    Get PDF
    Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide.The research described in this paper was included in AIRHEM IV project and financially supported by the Basque Government Research Program called Elkartek 2015 (code KK_2015/0000085)

    Evaluation of DSR on a Bluetooth Low Energy Network by Simulation

    Get PDF
    Applied Project submitted to the Department of Computer Science, Ashesi University College in partial fulfilment of the requirements for the award of Bachelor of Science degree in Computer Science.The Bluetooth Specifications Group recently released a new version of Bluetooth, called Bluetooth Low Energy. It is ideal for battery-powered IoT devices that do not require continuous streaming of information because it is more power efficient and relays information in short bursts, rather than continuously. The asynchronous nature of communication between the Bluetooth Smart nodes introduces a new challenge in terms of routing data among the different nodes. This project developed a simulation tool that simulates how Bluetooth Low Energy creates scatternets among different nodes as well as how routing is achieved. The ability of the routing algorithm to find the shortest route was also tested for and it was shown to be affected by the size of the network.Ashesi University Colleg

    Bluetooth Low PowerModes Applied to the Data Transportation Network in Home Automation Systems

    Get PDF
    Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks

    Proposta de um protocolo de roteamento autoconfigurável para redes mesh em Bluetooth Low Energy (BLE) baseado em proactive source routing

    Get PDF
    Orientador: Yuzo IanoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: A Internet das Coisas (Internet of Things ¿ IoT) visa a criação de ambientes inteligentes como domótica, comunicação intra-veicular e redes de sensores sem fio (Wireless Sensor Network ¿ WSN), sendo que atualmente essa tecnologia vem crescendo de forma rápida. Uma das tecnologias sem fio utilizada para aplicações de curta distância que se encontra mais acessível à população, em geral, é o Bluetooth. No final de 2010, o Bluetooth Special Interest Group (Bluetooth SIG), lançou a especificação Bluetooth 4.0 e, como parte dessa especificação, tem-se o Bluetooth Low Energy (BLE). O BLE é uma tecnologia sem fio de baixíssimo consumo de potência, que pode ser alimentada por uma bateria tipo moeda, ou até mesmo por indução elétrica (energy harvesting). A natureza do Bluetooth (e BLE) é baseada na conexão do tipo Mestre/Escravo. Muitos estudos mostram como criar redes mesh baseadas no Bluetooth clássico, que são conhecidas como Scatternets, onde alguns nós são utilizados como escravos com o objetivo de repassar os dados entre os mestres. Contudo, o BLE não tinha suporte para a mudança entre mestre e escravo até o lançamento da especificação Bluetooth 4.1, em 2013. A capacidade de uma tecnologia sem fio para IoT de criar uma rede ad-hoc móvel (Mobile Ad-hoc Network ¿ MANET) é vital para poder suportar uma grande quantidade de sensores, periféricos e dispositivos que possam coexistir em qualquer ambiente. Este trabalho visa propor um novo método de autoconfiguração para BLE, com descoberta de mapa de roteamento e manutenção, sem a necessidade de mudanças entre mestre e escravo, sendo compatível com os dispositivos Bluetooth 4.0, assim como com os 4.1 e mais recentes. Qualquer protocolo de mensagens pode aproveitar o método proposto para descobrir e manter a topologia de rede mesh em cada um dos seus nósAbstract: Nowadays, the Internet of Things (IoT) is spreading rapidly towards creating smart environments. Home automation, intra-vehicular interaction, and wireless sensor networks (WSN) are among the most popular applications discussed in IoT literature. One of the most available and popular wireless technologies for short-range operations is Bluetooth. In late 2010, the Bluetooth Special Interest Group (SIG) launched the Bluetooth 4.0 Specification, which brings Bluetooth Low Energy (BLE) as part of the specification. BLE characterises as being a very low power wireless technology, capable of working on a coin-cell or even by energy scavenging. Nevertheless, the nature of Bluetooth (and BLE) has always been a connection-oriented communication in a Master/Slave configuration. Several studies exist showing how to create mesh networks for Classic Bluetooth, called Scatternets, by utilizing some nodes as slaves to relay data between Masters. However, BLE didn¿t support role changing until the 4.1 Specification released in 2013. The capability of a wireless technology to create a Mobile Ad-Hoc Network (MANET) is vital for supporting the plethora of sensors, peripherals, and devices that could coexist in any IoT environment. This work focuses on proposing a new autoconfiguring dynamic address allocation scheme for a BLE Ad-Hoc network, and a network map discovery and maintenance mechanism that doesn¿t require role changing, thus being possible to implement it in 4.0 compliant devices as well as 4.1 or later to develop a MANET. Any ad-hoc routing protocol can utilise the proposed method to discover, keep track, and maintain the mesh network node topology in each of their nodesDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia ElétricaCAPE

    Device Discovery in Frequency Hopping Wireless Ad Hoc Networks

    Get PDF
    This research develops a method for efficient discovery of wireless devices for a frequency hopping spread spectrum, synchronous, ad hoc network comprised of clustered sub-networks. The Bluetooth wireless protocol serves as the reference protocol. The development of a discovery, or outreach, method for scatternets requires the characterization of performance metrics of Bluetooth piconets, many of which are unavailable in literature. Precise analytical models characterizing the interference caused to Bluetooth network traffic by inquiring devices, the probability mass function of packet error rates between arbitrary pairs of Bluetooth networks, and Bluetooth discovery time distribution are developed. Based on the characterized performance metrics, three scatternet outreach methods are developed and compared. Outreach methods which actively inquire on a regular basis, as proposed in literature, are shown to produce lower goodput, have greater mean packet delay, require more power, and cause significant delays in discovery. By passively remaining available for outreach, each of these disadvantages is avoided
    corecore