147 research outputs found

    Improving Floating Search Feature Selection using Genetic Algorithm

    Get PDF
    Classification, a process for predicting the class of a given input data, is one of the most fundamental tasks in data mining. Classification performance is negatively affected by noisy data and therefore selecting features relevant to the problem is a critical step in classification, especially when applied to large datasets. In this article, a novel filter-based floating search technique for feature selection to select an optimal set of features for classification purposes is proposed. A genetic algorithm is employed to improve the quality of the features selected by the floating search method in each iteration. A criterion function is applied to select relevant and high-quality features that can improve classification accuracy. The proposed method was evaluated using 20 standard machine learning datasets of various size and complexity. The results show that the proposed method is effective in general across different classifiers and performs well in comparison with recently reported techniques. In addition, the application of the proposed method with support vector machine provides the best performance among the classifiers studied and outperformed previous researches with the majority of data sets

    Context in Mobile System Design: Characterization, Theory, and Implications

    Get PDF
    Context information brings new opportunities for efficient and effective applications and services on mobile devices. Many existing work exploit the context dependency of mobile usage for specific applications, and show significant, quantified, performance gains by utilizing context. In order to be practical, such works often pay careful attention to the energy and processing costs of context awareness while attempting to maintain reasonable accuracy. These works also have to deal with the challenges of multiple sources of context, which can lead to a sparse training data set. Even with the abundance of such work, quantifying context-dependency and the relationship between context-dependency and performance achievements remains an open problem, and solutions to manage the and challenges of context awareness remain ad-hoc. To this end, this dissertation methodologically quantifies and measures the context dependency of three principal types of mobile usage in a methodological, application agnostic yet practical manner. The three usages are the websites the user visits, the phone numbers they call, and the apps they use, either built-in or obtained by the user from the App Store . While this dissertation measures the context dependency of these three principal types of mobile usage, its methodology can be readily extended to other context-dependent mobile usage and system resources. This dissertation further presents SmartContext, a framework to systematically optimize the energy cost of context awareness by selecting among different context sources, while satisfying the system designer’s cost-accuracy tradeoffs. Finally, this thesis investigates the collective effect of social context on mobile usage, by separating and comparing LiveLab users based on their socioeconomic groups. The analysis and findings are based on usage and context traces collected in real-life settings from 24 iPhone users over a period of one year. This dissertation presents findings regarding the context dependency of three principal types of mobile usage; visited websites, phone calls, and app usage. The methodology and lessons presented here can be readily extended to other forms of context and context-dependent usage and resources. They guide the development of context aware systems, and highlight the challenges and expectations regarding the context dependency of mobile usage

    Bayesian networks in additive manufacturing and reliability engineering

    Get PDF
    A Bayesian network (BN) is a powerful tool to represent the quantitative and qualitative features of a system in an intuitive yet sophisticated manner. The qualitative aspect is represented with a directed acyclic graph (DAG), depicting dependency relations between the random variables of the system. In a DAG, the variables of the system are shown with a set of nodes and the dependencies between them are shown with a directed edge. A DAG in the Bayesian network can be a causal graph under certain circumstances. The quantitative aspect is the local conditional probabilities associated with each variable, which is a factorization of the joint probability distribution of the variables in the system based on the dependency relation represented in the DAG. In this study, the benefits of using BNs in reliability engineering and additive manufacturing is investigated. In the case of reliability engineering, there are several methods to create predictive models for reliability features of a system. Predicting the possibility and the time of a possible failure is one of the important tasks in the reliability engineering principle. The quality of the corrective maintenance after each failure is affecting consecutive failure times. If a maintenance task after each failure involves replacing all the components of an equipment, called perfect maintenance, it is considered that the equipment is restored to an “as good as new” (AGAN) condition, and based on that, the consecutive failure times are considered independent. Not only in most of the cases the maintenance is not perfect, but the environment of the equipment and the usage patterns have a significant effect on the consecutive failure times. In this study, this effect is investigated by using Bayesian network structural learning algorithms to learn a BN based on the failure data of an industrial water pump. In additive manufacturing (AM) field, manufacturing systems are normally a complex combination of multiple components. This complex nature and the associated uncertainties in design and manufacturing parameters in additive manufacturing promotes the need for models that can handle uncertainties and are efficient in calculations. Moreover, the lack of AM knowledge in practitioners is one of the main obstacles for democratizing it. In this study, a method is developed for creating Bayesian network models for AM systems that includes experts’ and domain knowledge. To form the structure of the model, causal graphs obtained through dimensional analysis conceptual modeling (DACM) framework is used as the DAG for a Bayesian network after some modifications. DACM is a framework for extracting the causal graph and the governing equations between the variables of a complex system. The experts’ knowledge is extracted through a probability assessment process, called the analytical hierarchy process (AHP) and encoded into local probability tables associated with the independent variables of the model. To complete the model, a sampling technique is used along with the governing equations between the intermediate and output variables to obtain the rest of the probability tables. Such models can be used in many use cases, namely domain knowledge representation, defect prognosis and diagnosis and design space exploration. The qualitative aspect of the model is obtained from the physical phenomena in the system and the quantitative aspect is obtained from the experts’ knowledge, therefore the model can interactively represent the domain and the experts’ knowledge. In prognosis tasks, the probability distribution for the values that an output variable can take is calculated based on the values chosen for the input variables. In diagnosis tasks, the designer can investigate the reason for having a specific value in an output variable among the inputs. Finally, the model can be used to perform design space exploration. The model reduces the design space into a discretized and interactive Bayesian network space which is very convenient for design space exploration
    • …
    corecore