4,630 research outputs found

    Architecture and Applications of IoT Devices in Socially Relevant Fields

    Full text link
    Number of IoT enabled devices are being tried and introduced every year and there is a healthy competition among researched and businesses to capitalize the space created by IoT, as these devices have a great market potential. Depending on the type of task involved and sensitive nature of data that the device handles, various IoT architectures, communication protocols and components are chosen and their performance is evaluated. This paper reviews such IoT enabled devices based on their architecture, communication protocols and functions in few key socially relevant fields like health care, farming, firefighting, women/individual safety/call for help/harm alert, home surveillance and mapping as these fields involve majority of the general public. It can be seen, to one's amazement, that already significant number of devices are being reported on these fields and their performance is promising. This paper also outlines the challenges involved in each of these fields that require solutions to make these devices reliableComment: 1

    A framework to detect cyber-attacks against networked medical devices (Internet of Medical Things):an attack-surface-reduction by design approach

    Get PDF
    Most medical devices in the healthcare system are not built-in security concepts. Hence, these devices' built-in vulnerabilities prone them to various cyber-attacks when connected to a hospital network or cloud. Attackers can penetrate devices, tamper, and disrupt services in hospitals and clinics, which results in threatening patients' health and life. A specialist can Manage Cyber-attacks risks by reducing the system's attack surface. Attack surface analysis, either as a potential source for exploiting a potential vulnerability by attackers or as a medium to reduce cyber-attacks play a significant role in mitigating risks. Furthermore, it is necessitated to perform attack surface analysis in the design phase. This research proposes a framework that integrates attack surface concepts into the design and development of medical devices. Devices are classified as high-risk, medium-risk, and low-risk. After risk assessment, the employed classification algorithm detects and analyzes the attack surfaces. Accordingly, the relevant adapted security controls will be prompted to hinder the attack. The simulation and evaluation of the framework is the subject of further research.</p

    Evidence-Based Obstetric Emergency Team Training and Drills

    Get PDF
    Obstetrical emergencies occur in less than two percent of all pregnancies in the United States. These emergency situations are unanticipated and occur rapidly. According to the American Congress of Obstetricians and Gynecologists, the most common obstetric emergencies in the United States are postpartum hemorrhage and shoulder dystocia. When these emergency medical situations occur, the entire medical team should respond immediately with precision and confidence. There is evidence to support planning and collaboration of interdisciplinary teams with ongoing education and training, leading to prompt recognition and response to critical situations, which can ultimately mitigate poor outcomes during obstetric emergencies. This capstone project implemented a standardized training for obstetric emergencies, specifically postpartum hemorrhage and shoulder dystocia, to include didactic education, simulation lab skills check off, initial and ongoing drills, and an annual unit-based skills fair presentation. This project increased knowledge and prepared the labor and delivery team for competency validation, both initially and ongoing, when responding to obstetric postpartum hemorrhage and shoulder dystocia emergencies. The incidence of obstetric emergencies, specifically postpartum hemorrhage and shoulder dystocia, cannot be altered by this project; however, increased staff knowledge and competence should improve patient outcomes

    Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Get PDF
    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method

    The Interactive Medical Emergency Department (iMED): Architectural Integration of Digital Systems into the Emergency Care Environment

    Get PDF
    In healthcare, the architectural response to the development of information technologies has largely been relegated to a reactive role, essentially waiting for systems to develop and simply accommodating them with appropriately sized spaces. Designing IT systems independently from, rather than integrally with, their environment impedes them from reaching their full potential as vital components in the delivery of care by creating a lack of flexibility, decelerating performance, and degrading the healing environment. The flexibility of the environment is compromised by fixed position, single user data systems which prevent it from actively adapting to changing conditions, especially during volumetric surges associated with mass casualty events. Additionally, the delivery of care is hindered by traditional data entry points which minimize the caregiver\u27s ability to utilize information effectively by increasing distances to, and wait times for, available platforms. Furthermore, the overall quality of the healing environment is degraded by the increasing amount of technological clutter which can be difficult to sanitize, intimidating to patients, and unsafe by frustrating care. Dissolving the disconnect between architectural environments and information technology can be achieved by devising architectural elements and treatment protocols which would fuse both entities together, creating a more holistic, digitally integrated setting in which to deliver care. Utilizing advances such as integrated wall interfaces and environmental sensor systems would improve the delivery of care by empowering users and architectural settings with the ability to effectively adapt to changing conditions, increase accessibility to information, and streamline care for improved patient outcomes. Replacing fixed position, single user data entry systems with environmentally integrated surface interfaces would improve flexibility and performance by creating a multitude of localized points to access data, as well as streamline and simplify the environment by eliminating technological clutter. The process in which to derive an architectural response to the thesis statement was initiated by performing a series of interviews with nationally prominent professionals in the fields of healthcare architecture and information technology, attending international design conferences, interning in health facilities, assembling a cross-disciplinary thesis committee, and conducting a thorough literature review. The thesis research phase began by studying the historical progression and significance of information technology in healthcare environments in order to discern the architectural role in the implementation of these systems. The research focus was then shifted to all areas of architecture, identifying applicable precedent studies in which the environmental integration of information technology had enhanced the quality of the setting, highlighting characteristics that would improve flexibility, performance, and outcomes in the field of healthcare. From this exploration, a series of typological selection criteria were developed in order to determine which area within the healthcare spectrum would best demonstrate the potentials of this union. The emergency care environment was selected as an appropriate vessel to implement the thesis, due to its need for flexibility in order to accommodate ever changing demographic needs, significant volumetric shifts, fast paced care delivery which is dependent on the rapid utilization of information, and high patient turnover rate requiring an efficient throughput processes. Specific problems relevant to contemporary emergency departments were then identified, including overcrowding, staffing issues, and inability to accommodate for volumetric surges, all of which stem from inadequate throughput methodologies. The thesis then explored how the fusion of digital modalities with architectural elements in the emergency care environment would remediate these problems by improving the throughput of the facility. To ensure the final design holistically satisfies the goal of improving the quality and effectiveness of emergency care through the environmental integration of information technology, a series of design principles were developed to serve as its basis. In order to optimize data flow, access to input areas must be maximized by conceiving the building as an interface, where spatial boundaries become digital connections. If integrated data systems are to be accessible from a universal architectural interface and respond in a safe and controlled manner, digital scanning technologies such as biometrics and RFID tagging must be fused with physical threshold conditions in order to enable the digital system\u27s recognition of its inhabitants. In an additional effort to maintain safety, maximize workability, and ensure a level of sterility in sensitive environments, the facility needs to be designed into layers of penetration, regulating access to only those users who meet proper security clearances. Furthermore, the facility needs to act like a sponge, easily expanding and contracting the layers of penetration in an effort to accommodate unpredictable volumetric increases during mass casualty events. In addition to increasing its capacity, the facility should also be prepared to appropriate adjacent, existing infrastructure for overflow shelter and staging operations during such events. The programmatic typology of a freestanding medical emergency department, in which there is no connection to an existing facility, was selected with the intention of deriving a pure condition which eliminated extraneous influences from diluting the focus of this thesis on the relationship between information technology and architecture. Although rare in the US, freestanding emergency care facilities are a viable option for expanding healthcare provider\u27s coverage, capturing areas with growing populations, and improving the regional capability to respond effectively during mass casualty events. The base program was derived from the Swedish Medical Issaquah Campus Freestanding Emergency Department in Seattle, Washington, and then modified to function as a Point of Distribution (POD) site during mass casualty events. A series of potential mass casualty event scenarios were then developed in order to effectively prepare conceptual simulations to test possible responses from the facility\u27s program. The thesis proposal consists of a freestanding, 40,000+ square foot Interactive Medical Emergency Department (iMED) located in Charleston, SC. The proposal is guided by an established set of design principles, aiming to improve the delivery of emergency care during daily operations and mass casualty surge events through the architectural integration of information technology. In order to provide a range of possible disaster response situations, the building was located in the densely populated peninsula area of Charleston, South Carolina, within a region which is susceptible to an assortment of mass casualty events (including hurricanes, earthquakes, and terrorist attacks). The final site within the urban context adheres to a set of established criteria, including placement on open, stable, elevated land adjacent to the major access arterials of I-26, Hwy 17, and Meeting Street. Additionally, the site was located within a rapidly expanding, non-historical sector of the city which is not part of an existing healthcare complex. By meeting regional and urban conditions defined in the criteria, the site\u27s location strengthens the facility\u27s ability to deliver care during both daily and surge conditions substantially

    “You Came to Not Normal Land”: Nurses\u27 Experience of the Environment of Disaster: A Phenomenological Investigation

    Get PDF
    Previous research suggests US nurses are unprepared for disaster, and suffer from adverse psychosocial outcomes following their disaster response. Current disaster preparedness focuses on providing hospital-centric trauma and acute care in fully resourced Western conditions, and does not include the environmental realities of the disaster setting. This study utilized an existential phenomenological approach to explore the meaning of the nurse’s experience of the disaster environment. Eleven nurses with broad disaster expertise and training levels participated in this research. The essence of their disaster experiences can be summed up by the central theme of “You came to not normal land.” Four global themes that describe this “not normal land” were “All the resources was gone”; “You prepare, you prepare, and you are unprepared”; “It can be done; it’s just different”; and “Stuff that sticks with you.” The environment of disaster was both “not normal” and challenging owing to the many simultaneous breakdowns in healthcare supportive systems. Nurses were surprised and unprepared for the environmental conditions surrounding them. Reductions in systems (i.e. water, power), structures, staff, and supplies were coupled with lack of familiarity with alternative care sites, unaccustomed patient populations, the prevailing need for public health and fundamental nursing, and the isolated nature of disaster environments. Policies and regulations that “normally” guide nurses’ actions were disregarded in the immediacy of providing care when the usual social framework no longer existed. Nurses continue to relive the disaster setting’s sights, sounds, smells, and stories of the people they encountered. A strong sense of pride, duty, and willingness to respond again prevailed in these nurses. Nurses can be prepared for the likely conditions of reduced resources and damaged infrastructure following disaster by including the contextual setting of disaster nursing in disaster education, practice, training, and policy. Suggestions for further research include determining the relevance of current disaster training to the nurses’ actual disaster experience; determining what non-clinical knowledge or skills or training disaster nurses think would be useful; and identifying and measuring the contribution of environmental factors to disaster nurses’ stress

    An authentic-based privacy preservation protocol for smart e-healthcare systems in iot

    Get PDF
    © 2013 IEEE. Emerging technologies rapidly change the essential qualities of modern societies in terms of smart environments. To utilize the surrounding environment data, tiny sensing devices and smart gateways are highly involved. It has been used to collect and analyze the real-time data remotely in all Industrial Internet of Things (IIoT). Since the IIoT environment gathers and transmits the data over insecure public networks, a promising solution known as authentication and key agreement (AKA) is preferred to prevent illegal access. In the medical industry, the Internet of Medical Things (IoM) has become an expert application system. It is used to gather and analyze the physiological parameters of patients. To practically examine the medical sensor-nodes, which are imbedded in the patient\u27s body. It would in turn sense the patient medical information using smart portable devices. Since the patient information is so sensitive to reveal other than a medical professional, the security protection and privacy of medical data are becoming a challenging issue of the IoM. Thus, an anonymity-based user authentication protocol is preferred to resolve the privacy preservation issues in the IoM. In this paper, a Secure and Anonymous Biometric Based User Authentication Scheme (SAB-UAS) is proposed to ensure secure communication in healthcare applications. This paper also proves that an adversary cannot impersonate as a legitimate user to illegally access or revoke the smart handheld card. A formal analysis based on the random-oracle model and resource analysis is provided to show security and resource efficiencies in medical application systems. In addition, the proposed scheme takes a part of the performance analysis to show that it has high-security features to build smart healthcare application systems in the IoM. To this end, experimental analysis has been conducted for the analysis of network parameters using NS3 simulator. The collected results have shown superiority in terms of the packet delivery ratio, end-to-end delay, throughput rates, and routing overhead for the proposed SAB-UAS in comparison to other existing protocols

    Cybersecurity and the Digital Health: An Investigation on the State of the Art and the Position of the Actors

    Get PDF
    Cybercrime is increasingly exposing the health domain to growing risk. The push towards a strong connection of citizens to health services, through digitalization, has undisputed advantages. Digital health allows remote care, the use of medical devices with a high mechatronic and IT content with strong automation, and a large interconnection of hospital networks with an increasingly effective exchange of data. However, all this requires a great cybersecurity commitment—a commitment that must start with scholars in research and then reach the stakeholders. New devices and technological solutions are increasingly breaking into healthcare, and are able to change the processes of interaction in the health domain. This requires cybersecurity to become a vital part of patient safety through changes in human behaviour, technology, and processes, as part of a complete solution. All professionals involved in cybersecurity in the health domain were invited to contribute with their experiences. This book contains contributions from various experts and different fields. Aspects of cybersecurity in healthcare relating to technological advance and emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with different roles involved in cybersecurity in the health domain

    A systematic review of ambulance service-based randomised controlled trials in stroke

    Get PDF
    Background Treatment for stroke is time-dependent, and ambulance services play a vital role in the early recognition, assessment and transportation of stroke patients. Innovations which begin in ambulance services to expedite delivery of treatments for stroke are developing. However, research delivery in ambulance services is novel, developing and not fully understood. Aims To synthesise literature encompassing ambulance service-based randomised controlled interventions for acute stroke with consideration to the characteristics of the type of intervention, consent modality, time intervals and issues unique to research delivery in ambulance services. Summary of review Online searches of MEDLINE, EMBASE, Web of Science, CENTRAL and WHO IRCTP databases and hand searches identified 15 eligible studies from 538. Articles were heterogeneous in nature and meta-analysis was partially available as 13 studies reported key time intervals, but terminology varied. Randomised interventions were evident across all points of contact with ambulance services: identification of stroke during the call for help, higher dispatch priority assigned to stroke, on-scene assessment and clinical interventions, direct referral to comprehensive stroke centres and definitive care delivery at scene. Consent methods ranged between informed patient, waiver and proxy modalities with country-specific variation. Challenges unique to the prehospital setting comprise the geographical distribution of ambulance resources, low recruitment rates, prolonged recruitment phases, management of investigational medicinal product and incomplete datasets. Conclusion Research opportunities exist across all points of contact between stroke patients and ambulance services, but randomisation and consent remain novel. Early collaboration and engagement between trialists and ambulance services will alleviate some of the complexities reporte
    • …
    corecore