1,067 research outputs found

    Reducing false wake-up in contention-based wake-up control of wireless LANs

    Get PDF
    This paper studies the potential problem and performance when tightly integrating a low power wake-up radio (WuR) and a power-hungry wireless LAN (WLAN) module for energy efficient channel access. In this model, a WuR monitors the channel, performs carrier sense, and activates its co-located WLAN module when the channel becomes ready for transmission. Different from previous methods, the node that will be activated is not decided in advance, but decided by distributed contention. Because of the wake-up latency of WLAN modules, multiple nodes may be falsely activated, except the node that will actually transmit. This is called a false wake-up problem and it is solved from three aspects in this work: (i) resetting backoff counter of each node in a way as if it is frozen in a wake-up period, (ii) reducing false wake-up time by immediately putting a WLAN module into sleep once a false wake-up is inferred, and (iii) reducing false wake-up probability by adjusting contention window. Analysis shows that false wake-ups, instead of collisions, become the dominant energy overhead. Extensive simulations confirm that the proposed method (WuR-ESOC) effectively reduces energy overhead, by up to 60% compared with state-of-the-arts, achieving a better tradeoff between throughput and energy consumption

    A Game Theory based Contention Window Adjustment for IEEE 802.11 under Heavy Load

    Get PDF
    The 802.11 families are considered as the most applicable set of standards for Wireless Local Area Networks (WLANs) where nodes make access to the wireless media using random access techniques. In such networks, each node adjusts its contention window to the minimum size irrespective of the number of competing nodes, so in saturated mode and excessive number of nodes available, the network performance is reduced due to severe collision probability. A cooperative game is being proposed to adjust the users’ contention windows in improving the network throughput, delay and packet drop ratio under heavy traffic load circumstances. The system’s performance evaluated by simulations indicate some superiorities of the proposed method over 802.11-DCF (Distribute Coordinate Function)

    Energy-efficiency media access control in wireless ad hoc networks

    Get PDF

    A Review and Evaluation of Queue Based Control Power Efficient Spectrum Allocation Method for LTE Networks

    Full text link
    The cognitive radio based wireless regional area networks (WRAN) is nothing but IEEE-802.22 standard. IEEE 802.22 standard enables opportunistic access to in-use or free 900 MHz TV sub bands by secondary networks. There are many other standards presented; however there is no efficient methods for cognitive networks like LTE for channel access and bandwidth utilization. The existing methods for spectrum access in LTE networks, however most of methods are not flexible, power consuming. Also in literature, we studied that existing methods of spectrum allocation in LTE networks does not efficiently achieve the tradeoff between network QoS (Quality of Service) and power efficiency. The goal of this paper is to present the review on such different spectrum efficiency techniques for LTE networks and then evaluate the recent Queue Based Control (QBC) for power efficient spectrum allocation with its limitations and benefits. QBC approach helps in solving the research problem related to the energy efficiency as well as QoS efficiency to some extent. There are two variants of QBC method such as QBC1 and QBC2 with different objectives and configurations. We are evaluating both this approach on LTE network which is composed of Spectrum Manager (SM), evolved Nodes B (eNBs) and number of user’s. The experimental work is conducted using network simulator (NS2) for delay and energy consumption parameters
    • …
    corecore