330 research outputs found

    An Enhanced Grey Wolf Optimization Based Feature Selection Wrapped Kernel Extreme Learning Machine for Medical Diagnosis

    Get PDF
    In this study, a new predictive framework is proposed by integrating an improved grey wolf optimization (IGWO) and kernel extreme learning machine (KELM), termed as IGWO-KELM, for medical diagnosis. The proposed IGWO feature selection approach is used for the purpose of finding the optimal feature subset for medical data. In the proposed approach, genetic algorithm (GA) was firstly adopted to generate the diversified initial positions, and then grey wolf optimization (GWO) was used to update the current positions of population in the discrete searching space, thus getting the optimal feature subset for the better classification purpose based on KELM. The proposed approach is compared against the original GA and GWO on the two common disease diagnosis problems in terms of a set of performance metrics, including classification accuracy, sensitivity, specificity, precision, G-mean, F-measure, and the size of selected features. The simulation results have proven the superiority of the proposed method over the other two competitive counterparts

    An innovative metaheuristic strategy for solar energy management through a neural networks framework

    Get PDF
    Proper management of solar energy as an effective renewable source is of high importance toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic technique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural network. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network parameters. To suggest an optimal configuration, five influential parameters of the EFO are optimized by an extensive trial and error practice. Analyzing the results showed that the proposed model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a promising tool for the early prediction of SIr in practice. The findings of this research may shed light on the use of advanced intelligent models for efficient energy development

    Hybrid meta-heuristic algorithm based parameter optimization for extreme learning machines classification

    Get PDF
    Most classification algorithms suffer from manual parameter tuning and it affects the training computational time and accuracy performance. Extreme Learning Machines (ELM) emerged as a fast training machine learning algorithm that eliminates parameter tuning by randomly assigning the input weights and biases, and analytically determining the output weights using Moore Penrose generalized inverse method. However, the randomness assignment, does not guarantee an optimal set of input weights and biases of the hidden neurons. This will lead to ELM instability and local minimum solution. ELM performance also is affected by the network structure especially the number of hidden nodes. Too many hidden neurons will increase the network structure complexity and computational time. While too few hidden neuron numbers will affect the ELM generalization ability and reduce the accuracy. In this study, a heuristic-based ELM (HELM) scheme was designed to secure an optimal ELM structure. The results of HELM were validated with five rule-based hidden neuron selection schemes. Then HELM performance was compared with Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Classification and Regression Tree (CART) to investigate its relative competitiveness. Secondly, to improve the stability of ELM, the Moth-Flame Optimization algorithm is hybridized with ELM as MFO-ELM. MFO generates moths and optimizes their positions in the search space with a logarithm spiral model to obtain the optimal values of input weights and biases. The optimal weights and biases from the search space were passed into the ELM input space. However, it did not completely solve the problem of been stuck in the local extremum since MFO could not ensure a good balance between the exploration and exploitation of the search space. Thirdly, a co-evolutionary hybrid algorithm of the Cross-Entropy Moth-Flame Optimization Extreme Learning Machines (CEMFO-ELM) scheme was proposed. The hybrid of CE and MFO metaheuristic algorithms ensured a balance of exploration and exploitation in the search space and reduced the possibility of been trapped in the local minima. The performances of these schemes were evaluated on some selected medical datasets from the University of California, Irvine (UCI) machine learning repository, and compared with standard ELM, PSO-ELM, and CSO-ELM. The hybrid MFO-ELM algorithm enhanced the selection of optimal weights and biases for ELM, therefore improved its classification accuracy in a range of 0.4914 - 6.0762%, and up to 8.9390% with the other comparative ELM optimized meta-heuristic algorithms. The convergence curves plot show that the proposed hybrid CEMFO meta-heuristic algorithm ensured a balance between the exploration and exploitation in the search space, thereby improved the stability up to 53.75%. The overall findings showed that the proposed CEMFO-ELM provided better generalization performance on the classification of medical datasets. Thus, CEMFO-ELM is a suitable tool to be used not only in solving medical classification problems but potentially be used in other real-world problems

    A fused lightweight CNN model for the diagnosis of COVID-19 using CT scan images

    Get PDF
    Computed tomography is an effective tool that can be used for the fast diagnosis of COVID-19. However, in high case-load scenarios, there are chances of delay and human error in interpreting the scan images manually by an expert. An artificial intelligence (AI) based automated tool can be employed for fast and efficient diagnosis of this disease. For image-based diagnosis, convolutional neural networks (CNN) which is a subcategory of AI has been widely explored. However, these CNN models require significant computational resources for processing. Hence in this work, the performance of two lightweight least explored CNN models, namely SqueezeNet and ShuffleNet have been evaluated with CT scan images. While SqueezeNet produced an accuracy of 86.4%, ShuffleNet was able to provide an accuracy of 95.8%. Later, in order to improve the accuracy, a novel fused-model combining these two models has been developed and its performance has been evaluated. The fused-model outperformed the two base models with an overall accuracy of 97%. The analysis of the confusion matrix revealed an improved specificity of 96.08% and precision of 96.15% with a better fallout and false discovery rate of 3.91% and 3.84%, respectively

    An Integrated DC Series Arc Fault Detection Method for Different Operating Conditions

    Get PDF

    Enhanced Differential Crossover and Quantum Particle Swarm Optimization for IoT Applications

    Get PDF
    An optimized design with real-time and multiple realistic constraints in complex engineering systems is a crucial challenge for designers. In the non-uniform Internet of Things (IoT) node deployments, the approximation accuracy is directly affected by the parameters like node density and coverage. We propose a novel enhanced differential crossover quantum particle swarm optimization algorithm for solving nonlinear numerical problems. The algorithm is based on hybrid optimization using quantum PSO. Differential evolution operator is used to circumvent group moves in small ranges and falling into the local optima and improves global searchability. The cross operator is employed to promote information interchange among individuals in a group, and exceptional genes can be continued moderately, accompanying the evolutionary process's continuance and adding proactive and reactive features. The proposed algorithm's performance is verified as well as compared with the other algorithms through 30 classic benchmark functions in IEEE CEC2017, with a basic PSO algorithm and improved versions. The results show the smaller values of fitness function and computational efficiency for the benchmark functions of IEEE CEC2019. The proposed algorithm outperforms the existing optimization algorithms and different PSO versions, and has a high precision and faster convergence speed. The average location error is substantially reduced for the smart parking IoT application

    Evidence of Students’ Academic Performance at the Federal College of Education Asaba Nigeria: Mining Education Data

    Get PDF
    One main objective of higher education is to provide quality education to its students. One way to achieve the highest level of quality in the higher education system is by discovering knowledge for prediction regarding enrolment of students in a particular course, alienation of traditional classroom teaching model, detection of unfair means used in online examination, detection of abnormal values in the result sheets of the students, and prediction about students’ performance. The knowledge is hidden among the educational data set and is extractable through data mining techniques. The present paper is designed to justify the capabilities of data mining techniques in the context of higher education by offering a data mining model for the higher education system in the university. In this research, the classification task is used to evaluate student’s performance, and as many approaches are used for data classification, the decision tree method is used here. By this, we extract data that describes students’ summative performance at semester’s end, helps to identify the dropouts and students who need special attention, and allows the teacher to provide appropriate advising/counseling

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel

    Get PDF
    In this paper, wave propagation analysis of multi-hybrid nanocomposite (MHC) reinforced doubly curved panel embedded in the viscoelastic foundation is carried out. Higher-order shear deformable theory (HSDT) is utilized to express the displacement kinematics. The rule of mixture and modified Halpin–Tsai model are engaged to provide the effective material constant of the MHC reinforced doubly curved panel. By employing Hamilton’s principle, the governing equations of the structure are derived and solved with the aid of an analytical method. Afterward, a parametric study is carried out to investigate the effects of the viscoelastic foundation, carbon nanotubes’ (CNTs’) weight fraction, various MHC patterns, radius to total thickness ratio, and carbon fibers angel on the phase velocity of the MHC reinforced doubly curved panel in the viscoelastic medium. The results show that, by considering the viscous parameter, the relation between wavenumber and phase velocity changes from exponential increase to logarithmic boost. A useful suggestion of this research is that the effects of fiber angel and damping parameter on the phase velocity of a doubly curved panel are hardly dependent on the wavenumber. The presented study outputs can be used in ultrasonic inspection techniques and structural health monitoring.publishe
    • …
    corecore