260 research outputs found

    Hyper-Erlang Battery-Life Energy Scheme in IEEE 802.16e Networks

    Get PDF
    IEEE 802.16e networks is one of the broadband wireless technologies that support multimedia services while users are in mobility. Although these users use devices that have limited battery capacity, several energy schemes were proposed to improve the battery-life. However, these schemes inappropriately capture the traffic characteristics, which lead to waste of energy and high response delay. In this paper, a Hyper-Erlang Battery-Life Energy Scheme (HBLES) is proposed to enhance energy efficiency and reduce the delay. The scheme analytically modifies idle threshold, initial sleep window and final sleep window based on the remaining battery power and the traffic pattern. It also employs a Hyper-Erlang distribution to determine the real traffic characteristics. Several simulations are carried out to evaluate the performance of the HBLES scheme and the compared scheme.  The results show that the HBLES scheme out performs the existing scheme in terms of energy consumption and response delay

    Delay versus energy consumption of the IEEE 802.16e sleep-mode mechanism

    Get PDF
    We propose a discrete-time queueing model for the evaluation of the IEEE 802.16e sleep-mode mechanism of Power Saving Class (PSC) I in wireless access networks. Contrary to previous studies, we model the downlink traffic by means of a Discrete Batch Markov Arrival Process (D-BMAP) with N phases, which allows to take traffic correlation into account. The tradeoff between energy saving and increased packet delay is discussed. In many situations, the sleep-mode performance improves for heavily correlated traffic. Also, when compared to other strategies, the exponential sleep-period update strategy of PSC I may not always be the best

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency

    Exploring the intra-frame energy conservation capabilities of the horizontal simple packing algorithm in IEEE 802.16e networks: an analytical approach

    Get PDF
    The power saving capabilities of the mobile devices in broadband wireless networks constitute a challenging research topic that has attracted the attention of researchers recently, while it needs to be addressed at multiple layers. This work provides a novel analysis of the intra-frame energy conservation potentials of the IEEE 802.16e network. Specifically, the power saving capabilities of the worldwide interoperability for microwave access downlink sub-frame are thoroughly studied, employing the well-known simple packing algorithm as the mapping technique of the data requests. The accurate mathematical model, cross-validated via simulation, reveals the significant ability to conserve energy in this intra-frame fashion under different scenarios. To the best of our knowledge, this is the first work providing intra-frame power-saving potentials of IEEE 802.16 networks. Additionally, this is the first study following an analytic approach

    Handover evaluation of UMTS-WiMAX networks

    Get PDF
    Recently, data traffic movement through a wireless channel is assisted by suggesting and implementing many mechanisms, to achieve the speedy increasing importunity and popularity of the wireless networks. Various wireless technologies can be copulated to develop a heterogeneous network, which is a candidate towards (4G) networks. OPNET modeler (14.5) is used to design simulation modules of the heterogeneous network. During device connection between the worldwide interoperability for microwave access (WiMAX) and universal mobile telecommunication system (UMTS) networks, Performance metrics such as; Jitter end-to-end delay (E-2-E) Throughput is used. The results of the simulation are measured to determine the efficiency of the transfer using WiMAX-UMTS according to the selected metrics. The WiMAX-UMTS has shown valuable improvement in Process Durability, reduction of E-2-E delay, and Jitter. The maximum amount of data transfer and the least amount of delay and Jitter is at 250 sec. Because of the handover operations and data transfer momentum, the worst-case passes in the network when 618 sec is the minimum amount. The efficiency of throughput for WiMAX equal to 0.092666% as for the efficiency of throughput for UMTS equal to 4.633333*10-6 % whereas the E-2-E efficiency a delay equal to 0.5466%

    An efficient battery lifetime aware power saving (EBLAPS) mechanism in IEEE 802.16e networks

    Get PDF
    The IEEE 802.16e standard is an emergent broadband wireless access technology that added the mobility feature to the original standard. This feature made battery life of an operated mobile subscribe station (MSS) a bigger challenge because an MSS is powered by a rechargeable battery. The battery lifetime mechanism has to be created in order to prolong the battery-life of an MSS. The battery lifetime-aware power saving (BLAPS) scheme has been created to prolong the battery life of an MSS by adaptively adjusting the three-sleep parameters named idle threshold, initial sleep window, and final sleep window according to the residual energy and the traffic load. However, the scheme minimized the energy consumption of the MSS at the expense of the average response delay due to the effect of the remaining energy. It also used the standard sleep mode algorithm where the MSS frequently goes to listening mode when the traffic is low which leads to the high-energy consumption. In this paper, a new energy mechanism called efficient battery life-aware power saving scheme has been proposed to enhance the parameters of BLAPS. The three-sleep parameters in BLAPS mechanism are analytically enhanced according to the downlink stochastic traffic arrival pattern of an MSS. Moreover, an improved sleep mode control algorithm has been introduced to reduce the frequent transition to listening mode in case of low traffic. The simulation has been extensively used to evaluate the proposed scheme. The results have shown that the proposed scheme outperforms the BLAPS significantly in terms of both the average response delay and the average energy consumption

    Performance analysis of a generalized and autonomous DRX scheme

    Get PDF
    A generalized and autonomous DRX (discontinuous reception) scheme, applicable to both 3GPP and IEEE 802.16e standards, is analyzed by two - level Markov chain modeling along with the ETSI packet traffic model. Numerical analysis showed that this scheme is capable of autonomously adjusting DRX cycle to keep up with changing UE activity level with no signaling overhead increase, thus produces a better tuned DRX operation. Quantitative comparison with the power saving schemes of 3GPP and 802.16e standards demonstrated that it is advantageous over and generalization of these power saving schemes

    Survey on Data-Centric based Routing Protocols for Wireless Sensor Networks

    Full text link
    The great concern for energy that grew with the technological advances in the field of networks and especially in sensor network has triggered various approaches and protocols that relate to sensor networks. In this context, the routing protocols were of great interest. The aim of the present paper is to discuss routing protocols for sensor networks. This paper will focus mainly on the discussion of the data-centric approach (COUGAR, rumor, SPIN, flooding and Gossiping), while shedding light on the other approaches occasionally. The functions of the nodes will be discussed as well. The methodology selected for this paper is based on a close description and discussion of the protocol. As a conclusion, open research questions and limitations are proposed to the reader at the end of this paper
    corecore