117 research outputs found

    An Enhanced Bailout Protocol for Mixed Criticality Embedded Software

    Get PDF
    To move mixed criticality research into industrial practice requires models whose run-time behaviour is acceptable to systems engineers. Certain aspects of current models, such as abandoning lower criticality tasks when certain situations arise, do not give the robustness required in application domains such as the automotive and aerospace industries. In this paper a new bailout protocol is developed that still guarantees high criticality software but minimises the negative impact on lower criticality software via a timely return to normal operation. We show how the bailout protocol can be integrated with existing techniques, utilising both offline slack and online gain-time to further improve performance. Static analysis is provided for schedulability guarantees, while scenario-based evaluation via simulation is used to explore the effectiveness of the protocol

    A Lazy Bailout Approach for Dual-Criticality Systems on Uniprocessor Platforms

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland.A challenge in the design of cyber-physical systems is to integrate the scheduling of tasks of different criticality, while still providing service guarantees for the higher critical tasks in case of resource-shortages caused by faults. While standard real-time scheduling is agnostic to the criticality of tasks, the scheduling of tasks with different criticalities is called mixed-criticality scheduling. In this paper we present the Lazy Bailout Protocol (LBP), a mixed-criticality scheduling method where low-criticality jobs overrunning their time budget cannot threaten the timeliness of high-criticality jobs while at the same time the method tries to complete as many low-criticality jobs as possible. The key principle of LBP is instead of immediately abandoning low-criticality jobs when a high-criticality job overruns its optimistic WCET estimate, to put them in a low-priority queue for later execution. To compare mixed-criticality scheduling methods we introduce a formal quality criterion for mixed-criticality scheduling, which, above all else, compares schedulability of high-criticality jobs and only afterwards the schedulability of low-criticality jobs. Based on this criterion we prove that LBP behaves better than the original {\em Bailout Protocol} (BP). We show that LBP can be further improved by slack time exploitation and by gain time collection at runtime, resulting in LBPSG. We also show that these improvements of LBP perform better than the analogous improvements based on BP.Peer reviewedFinal Published versio

    Adaptive Mid-term and Short-term Scheduling of Mixed-criticality Systems

    Get PDF
    A mixed-criticality real-time system is a real-time system having multiple tasks classified according to their criticality. Research on mixed-criticality systems started to provide an effective and cost efficient a priori verification process for safety critical systems. The higher the criticality of a task within a system and the more the system should guarantee the required level of service for it. However, such model poses new challenges with respect to scheduling and fault tolerance within real-time systems. Currently, mixed-criticality scheduling protocols severely degrade lower criticality tasks in case of resource shortage to provide the required level of service for the most critical ones. The actual research challenge in this field is to devise robust scheduling protocols to minimise the impact on less critical tasks. This dissertation introduces two approaches, one short-term and the other medium-term, to appropriately allocate computing resources to tasks within mixed-criticality systems both on uniprocessor and multiprocessor systems. The short-term strategy consists of a protocol named Lazy Bailout Protocol (LBP) to schedule mixed-criticality task sets on single core architectures. Scheduling decisions are made about tasks that are active in the ready queue and that have to be dispatched to the CPU. LBP minimises the service degradation for lower criticality tasks by providing to them a background execution during the system idle time. After, I refined LBP with variants that aim to further increase the service level provided for lower criticality tasks. However, this is achieved at an increased cost of either system offline analysis or complexity at runtime. The second approach, named Adaptive Tolerance-based Mixed-criticality Protocol (ATMP), decides at runtime which task has to be allocated to the active cores according to the available resources. ATMP permits to optimise the overall system utility by tuning the system workload in case of shortage of computing capacity at runtime. Unlike the majority of current mixed-criticality approaches, ATMP allows to smoothly degrade also higher criticality tasks to keep allocated lower criticality ones

    Analysis-Runtime Co-design for Adaptive Mixed Criticality Scheduling

    Get PDF
    In this paper, we use the term “Analysis-Runtime Co-design” to describe the technique of modifying the runtime protocol of a scheduling scheme to closely match the analysis derived for it. Carefully designed modifications to the runtime protocol make the schedulability analysis for the scheme less pessimistic, while the schedulability guarantee afforded to any given application remains intact. Such modifications to the runtime protocol can result in significant benefits with respect to other important metrics. An enhanced runtime protocol is designed for the Adaptive Mixed-Criticality (AMC) scheduling scheme. This protocol retains the same analysis, while ensuring that in the event of high-criticality behavior, the system degrades less often and remains degraded for a shorter time, resulting in far fewer low-criticality jobs that either miss their deadlines or are not executed

    Industrial Application of a Partitioning Scheduler to Support Mixed Criticality Systems

    Get PDF
    The ever-growing complexity of safety-critical control systems continues to require evolution in control system design, architecture and implementation. At the same time the cost of developing such systems must be controlled and importantly quality must be maintained. This paper examines the application of Mixed Criticality System (MCS) research to a DAL-A aircraft engine Full Authority Digital Engine Control (FADEC) system which includes studying porting the control system\u27s software to a preemptive scheduler from a non-preemptive scheduler. The paper deals with three key challenges as part of the technology transitions. Firstly, how to provide an equivalent level of fault isolation to ARINC 653 without the restriction of strict temporal slicing between criticality levels. Secondly extending the current analysis for Adaptive Mixed Criticality (AMC) scheduling to include the overheads of the system. Finally the development of clustering algorithms that automatically group tasks into larger super-tasks to both reduce overheads whilst ensuring the timing requirements, including the important task transaction requirements, are met

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    Open Challenges for Probabilistic Measurement-Based Worst-Case Execution Time

    Get PDF
    The worst-case execution time (WCET) is a critical parameter describing the largest value for the execution time of programs. Even though such a parameter is very hard to attain, it is essential as part of guaranteeing a real-time system meets its timing requirements. The complexity of modern hardware has increased the challenges of statically analyzing the WCET and reduced the reliability of purely measuring the WCET. This has led to the emergence of probabilistic WCETs (pWCETs) analysis as a viable technique. The low probability of appearance of large execution times of a program has motivated the utilization of rare events theory like extreme value theory (EVT). As pWCET estimation based on EVT has matured as a discipline, a number of open challenges have become apparent when applying the existing approaches. This letter enumerates key challenges while establishing a state of the art of EVT-based pWCET estimation methods

    ODRE Workshop: Using SIL Arithmetic to Design Safe and Secure Systems

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In a safety-critical system each service has a specific level of safety criticality. Safety standards use classifications like Safety Integrity Levels (SIL), to describe the design requirements for the individual services of a system. Techniques like redundancy can be used to achieve a higher overall dependability than the used individual components provide. Using the notion of SIL, this can be called SIL arithmetic. In this paper we describe the concept of SIL arithmetic and point out how different safety standards provide hints for their support of using SIL arithmetic. We highlight the principal benefits of SIL arithmetic and provide simple examples. But the use of SIL arithmetic in a concrete system design can also have its pitfalls, which we also discuss in this paper. We specifically discuss these issues in the context of scheduling techniques for mixed-criticality systems, where resource shortages are to be handled by the scheduler

    MC-ADAPT: Adaptive Task Dropping in Mixed-Criticality Scheduling

    Get PDF
    Recent embedded systems are becoming integrated systems with components of different criticality. To tackle this, mixed-criticality systems aim to provide different levels of timing assurance to components of different criticality levels while achieving efficient resource utilization. Many approaches have been proposed to execute more lower-criticality tasks without affecting the timeliness of higher-criticality tasks. Those previous approaches however have at least one of the two limitations; i) they penalize all lower-criticality tasks at once upon a certain situation, or ii) they make the decision how to penalize lowercriticality tasks at design time. As a consequence, they underutilize resources by imposing an excessive penalty on lowcriticality tasks. Unlike those existing studies, we present a novel framework, called MC-ADAPT, that aims to minimally penalize lower-criticality tasks by fully reflecting the dynamically changing system behavior into adaptive decision making. Towards this, we propose a new scheduling algorithm and develop its runtime schedulability analysis capable of capturing the dynamic system state. Our proposed algorithm adaptively determines which task to drop based on the runtime analysis. To determine the quality of task dropping solution, we propose the speedup factor for task dropping while the conventional use of the speedup factor only evaluates MC scheduling algorithms in terms of the worst-case schedulability. We apply the speedup factor for a newly-defined task dropping problem that evaluates task dropping solution under different runtime scheduling scenarios. We derive that MC-ADAPT has a speedup factor of 1.619 for task drop. This implies that MC-ADAPT can behave the same as the optimal scheduling algorithm with optimal task dropping strategy does under any runtime scenario if the system is sped up by a factor of 1.619

    Industrial Application of a Partitioning Scheduler to Support Mixed Criticality Systems

    Get PDF
    The ever-growing complexity of safety-critical control systems continues to require evolution in control system design, architecture and implementation. At the same time the cost of developing such systems must be controlled and importantly quality must be maintained. This paper examines the application of Mixed Criticality System (MCS) research to a DAL-A aircraft engine Full Authority Digital Engine Control (FADEC) system which includes studying porting the control system’s software to a preemptive scheduler from a non-preemptive scheduler. The paper deals with three key challenges as part of the technology transitions. Firstly, how to provide an equivalent level of fault isolation to ARINC 653 without the restriction of strict temporal slicing between criticality levels. Secondly extending the current analysis for Adaptive Mixed Criticality (AMC) scheduling to include the overheads of the system. Finally the development of clustering algorithms that automatically group tasks into larger super-tasks to both reduce overheads whilst ensuring the timing requirements, including the important task transaction requirements, are met
    • …
    corecore