12,812 research outputs found

    Filling Knowledge Gaps in a Broad-Coverage Machine Translation System

    Full text link
    Knowledge-based machine translation (KBMT) techniques yield high quality in domains with detailed semantic models, limited vocabulary, and controlled input grammar. Scaling up along these dimensions means acquiring large knowledge resources. It also means behaving reasonably when definitive knowledge is not yet available. This paper describes how we can fill various KBMT knowledge gaps, often using robust statistical techniques. We describe quantitative and qualitative results from JAPANGLOSS, a broad-coverage Japanese-English MT system.Comment: 7 pages, Compressed and uuencoded postscript. To appear: IJCAI-9

    Efficient deep processing of japanese

    Get PDF
    We present a broad coverage Japanese grammar written in the HPSG formalism with MRS semantics. The grammar is created for use in real world applications, such that robustness and performance issues play an important role. It is connected to a POS tagging and word segmentation tool. This grammar is being developed in a multilingual context, requiring MRS structures that are easily comparable across languages

    Multiple Discourse Relations on the Sentential Level in Japanese

    Get PDF
    In the German government (BMBF) funded project Verbmobil, a semantic formalism Language for Underspecified Discourse Representation Structures (LUD) is used which describes several DRSs and allows for underspecification. Dealing with Japanese poses challenging problems. In this paper, a treatment of multiple discourse relation constructions on the sentential level is shown, which are common in Japanese but cause a problem for the formalism,. The problem is to distinguish discourse relations which take the widest scope compared with other scope-taking elements on the one hand and to have them underspecified among each other on the other hand. We also state a semantic constraint on the resolution of multiple discourse relations which seems to prevail over the syntactic c-command constraint.Comment: 6 pages, Postscrip

    Acquiring Word-Meaning Mappings for Natural Language Interfaces

    Full text link
    This paper focuses on a system, WOLFIE (WOrd Learning From Interpreted Examples), that acquires a semantic lexicon from a corpus of sentences paired with semantic representations. The lexicon learned consists of phrases paired with meaning representations. WOLFIE is part of an integrated system that learns to transform sentences into representations such as logical database queries. Experimental results are presented demonstrating WOLFIE's ability to learn useful lexicons for a database interface in four different natural languages. The usefulness of the lexicons learned by WOLFIE are compared to those acquired by a similar system, with results favorable to WOLFIE. A second set of experiments demonstrates WOLFIE's ability to scale to larger and more difficult, albeit artificially generated, corpora. In natural language acquisition, it is difficult to gather the annotated data needed for supervised learning; however, unannotated data is fairly plentiful. Active learning methods attempt to select for annotation and training only the most informative examples, and therefore are potentially very useful in natural language applications. However, most results to date for active learning have only considered standard classification tasks. To reduce annotation effort while maintaining accuracy, we apply active learning to semantic lexicons. We show that active learning can significantly reduce the number of annotated examples required to achieve a given level of performance
    • …
    corecore