9,059 research outputs found

    Mass Customization Capabilities in Practice – Introducing the Mass into Customized Tech-Textiles in an SME Network

    Get PDF
    The German textile industry is dominated by small and medium-sized enterprises (SMEs) with limited resources and specialized skills producing customized technical textiles following an engineer-to-order approach. To expand their skills, SMEs form business networks. The development and production of customized technical textiles in networks are highly complex. The coordination requires high effort and results in inefficient and ineffective information flow, weakening the networks’ competitive advantage. Following a case study approach, we accompany an SME network over three years as they develop and implement a digital col-laboration platform. We derived a framework of micro-foundations of Mass Customization capabilities supporting high-order Mass Customization capabilities for customer integration, solution space development, and robust processes. Thus, we present results on how an SME network in the textile industry leverages Mass Customization capabilities to increase efficien-cy via a digital collaboration platform

    Managing design variety, process variety and engineering change: a case study of two capital good firms

    Get PDF
    Many capital good firms deliver products that are not strictly one-off, but instead share a certain degree of similarity with other deliveries. In the delivery of the product, they aim to balance stability and variety in their product design and processes. The issue of engineering change plays an important in how they manage to do so. Our aim is to gain more understanding into how capital good firms manage engineering change, design variety and process variety, and into the role of the product delivery strategies they thereby use. Product delivery strategies are defined as the type of engineering work that is done independent of an order and the specification freedom the customer has in the remaining part of the design. Based on the within-case and cross-case analysis of two capital good firms several mechanisms for managing engineering change, design variety and process variety are distilled. It was found that there exist different ways of (1) managing generic design information, (2) isolating large engineering changes, (3) managing process variety, (4) designing and executing engineering change processes. Together with different product delivery strategies these mechanisms can be placed within an archetypes framework of engineering change management. On one side of the spectrum capital good firms operate according to open product delivery strategies, have some practices in place to investigate design reuse potential, isolate discontinuous engineering changes into the first deliveries of the product, employ ‘probe and learn’ process management principles in order to allow evolving insights to be accurately executed and have informal engineering change processes. On the other side of the spectrum capital good firms operate according to a closed product delivery strategy, focus on prevention of engineering changes based on design standards, need no isolation mechanisms for discontinuous engineering changes, have formal process management practices in place and make use of closed and formal engineering change procedures. The framework should help managers to (1) analyze existing configurations of product delivery strategies, product and process designs and engineering change management and (2) reconfigure any of these elements according to a ‘misfit’ derived from the framework. Since this is one of the few in-depth empirical studies into engineering change management in the capital good sector, our work adds to the understanding on the various ways in which engineering change can be dealt with

    Product Configuration Systems: State of the Art, Conceptualization and Extensions

    Get PDF
    Product configurators are considered to be among the most successful applications of artificial intelligence technology. In this paper, we determine different conceptualizations of configurators and condense them in a comprehensive morphological box, which should support configurator designers as well as decision makers in selecting the right system. The analysis of the criteria according to which configurators that are designed thus far reveals a neglect of the front-end perspective. Therefore, it is relevant to extend configurators with a front-end component assisting customers during product configuration through advisory. We develop a framework describing the main requirements on an advisory system and propose the technical infrastructure for its implementation. Finally, the advisory system and the configurator are integrated into a comprehensive interaction system.product configurators; advisory system; product personalization

    Active learning based laboratory towards engineering education 4.0

    Get PDF
    Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version

    Performance measures for mass customization strategies in an ETO environment

    Get PDF

    Extending the product portfolio with ‘devolved manufacturing’: Methodology and case studies

    Get PDF
    Current research by the developers of rapid prototyping systems is generally focused on improvements in cost, speed and materials to create truly economic and practical economic rapid manufacturing machines. In addition to being potentially smarter/faster/cheaper replacements for existing manufacturing technologies, the next generation of these machines will provide opportunities not only for the design and fabrication of products without traditional constraints, but also for organizing manufacturing activities in new, innovative and previously undreamt of ways. This paper outlines a novel devolved manufacturing (DM) ‘factory-less’ approach to e-manufacturing, which integrates Mass Customization (MC) concepts, Rapid Manufacturing (RM) technologies and the communication opportunities of the Internet/WWW, describes two case studies of different DM implementations and discusses the limitations and appropriateness of each, and finally, draws some conclusions about the technical, manufacturing and business challenges involved

    ASSESSING PRODUCT CONFIGURATOR CAPABILITIES FOR SUCCESSFUL MASS CUSTOMIZATION

    Get PDF
    Mass customization is becoming a competitive strategy for companies offering individualized products. Product configurators provide a platform for companies to do interactive product configuration which is essential for mass customization. Companies need to realize the degree of customization appreciated by the customers and the extent of customization that can be offered competitively. This research is an effort to develop an approach to ascertain the product configurator requirements to achieve mass customization. The frameworks developed for this research are validated with a case study
    corecore