42,375 research outputs found

    CLE2aR2: A cross-layer energy-efficient and reliable routing protocol for wireless ad hoc networks

    Get PDF
    [[abstract]]The paper presents a cross-layer energy-efficient and reliable routing (named CLE2aR2) protocol to construct an energy efficient and reliable route and resist the variation of wireless channels for wireless ad hoc networks. CLE2aR2not only considers how to construct a route from the source to the destination, but also takes some important lower-layer factors, such as power strength, data transfer rate, and interference, into account to reflect the real situation of a wireless channel dynamically and instantly. Based on these factors, a reliable route can be constructed such that the retransmission cost can be reduced and the energy consumption can be saved. Simulation results also show that CLE2aR2can indeed construct an energy efficient and reliable route in comparison with the related work.[[conferencetype]]國際[[conferencedate]]20080706~20080709[[conferencelocation]]Marrakech, Morocc

    A beacon-enabled least-time and energy efficient with one-level data aggregation routing protocol for WSNs using IEEE 802.15.4

    Get PDF
    The Wireless Sensor Networks (WSNs) field of research is an interesting topic in the research community these days, because of its applicability in various fields such as civilian and medical research applications. Due to the resources and energy constraints in WSNs, routing can be considered as one of the most important issues in these networks. Every routing protocol designed for WSNs should be reliable, energy-efficient and prolong the network lifetime. This research proposes a beacon-enabled least-time and energy-efficient routing protocol with one-level data-aggregation using an IEEE 802.15.4 which is suitable for Low-Rate Wireless Personal Area Networks as WSNs, because of its low power consuming feature. The proposed protocol is compared to popular ad hoc and WSNs routing protocols i.e., Ad hoc On-Demand Distance Vector, Dynamic Source Routing, Destination-Sequenced Distance Vector routing, Directed Diffusion and Minimum Cost Forwarding. The propose work is simulated using network simulator 2. The simulation results show that the proposed protocol outperformed the routing protocols in the literature in terms of latency, throughput, average energy consumption and average network lifetime

    Improve Energy Efficiency In Cooperative Medium Access Control Protocol For Wireless Networks

    Get PDF
    Cooperative communication has drawn a substantial attention in recent years due to the efficient and optimal utilization of constraint resources in dynamic wireless networks at a reduced infrastructural deployment and cost. In the medium access control (MAC) layer perspective, two major problems are associated with cooperative networks. The ability of cooperative MAC (CMAC) protocols to achieve multi-objective target orientation limit their adaptation to the future generation of wireless networks, since most of the existing protocols focus only on a single target objective. Besides, the sustainability of energy-constrained wireless networks due to limited energy supply capacity hinders their performance to ensure stable and reliable communication. These aforementioned problems limit the adaptation of the existing protocols to fit into the future generation of wireless networks. To adequately address these problems, two distinct CMAC protocols are proposed in this thesis to cater for the unpredictable and dynamic nature of the wireless network. Firstly, a new network lifetime-aware CMAC protocol named LEA-CMAC is proposed for energy-constrained wireless ad-hoc networks. An optimization problem is formulated with an objective of extending the lifetime of the network. The solution to this non-linear problem is provided in terms of optimal transmit power at the source and relay terminals in symmetric and asymmetric transmit power policies. The solution provided by this protocol is limited in terms of energy efficiency and network lifetime since the network totally rely on the helper nodes limited-powered batteries for their transmissions. Secondly, a novel CMAC protocol with radio frequency (RF) energy harvesting (EH) capability named EH-CMAC is proposed in a reactive relaying energy-constrained wireless ad-hoc networks to address the limitation in the earlier proposed LEA-CMAC protocol. The protocol possesses the ability to ensure a sustainable and reliable wireless connectivity in a dynamic wireless environment through the selection of an appropriate transmission mode that best suits the instantaneous network requirement. The protocol comprises of two distinct energy-efficient techniques namely, the outage probability quality-of-service (QoS) requirement and the transmit power optimization techniques which are applied in both traditional and EH relaying schemes. These techniques are selected and adapted based on the instantaneous network information and target objectives. In addition, a distributed and adaptive relay selection backoff process is proposed in each case to satisfy the available network information and achieve a multi-objective target oriented protocol. Through extensive simulation and comparison with existing CMAC protocols, the results show that LEA-CMAC extend the network lifetime by 85.67% over an existing CMAC protocol, while EH-CMAC extends the network lifetime by 90.99% over a traditional CMAC protocol. Thus, both protocols achieve a multi-objective target orientation under general circumstances

    Adaptive Reliable Routing Protocol for Wireless Sensor Networks

    Get PDF
    International audienceMany Wireless Sensor Networks (WSN) applications success is contingent upon the reliable delivery of high-priority events from many scattered sensors to one or more sink nodes. In particular, WSN has to be self-adaptive and resilient to errors by providing efficient mechanisms for information distribution especially in the multi-hop scenario. To meet the stringent requirement of reliably transmitting data, we propose a lightweight and energy-efficient joint mechanism for packet loss recovery and route quality awareness in WSNs. In this protocol, we use the overhearing feature characterizing the wireless channels as an implicit acknowledgment (ACK) mechanism. In addition, the protocol allows for an adaptive selection of the routing path, based on a collective cooperation within neighborhood

    Data Dissemination Performance in Large-Scale Sensor Networks

    Full text link
    As the use of wireless sensor networks increases, the need for (energy-)efficient and reliable broadcasting algorithms grows. Ideally, a broadcasting algorithm should have the ability to quickly disseminate data, while keeping the number of transmissions low. In this paper we develop a model describing the message count in large-scale wireless sensor networks. We focus our attention on the popular Trickle algorithm, which has been proposed as a suitable communication protocol for code maintenance and propagation in wireless sensor networks. Besides providing a mathematical analysis of the algorithm, we propose a generalized version of Trickle, with an additional parameter defining the length of a listen-only period. This generalization proves to be useful for optimizing the design and usage of the algorithm. For single-cell networks we show how the message count increases with the size of the network and how this depends on the Trickle parameters. Furthermore, we derive distributions of inter-broadcasting times and investigate their asymptotic behavior. Our results prove conjectures made in the literature concerning the effect of a listen-only period. Additionally, we develop an approximation for the expected number of transmissions in multi-cell networks. All results are validated by simulations

    ENERGY AWARE ROUTING FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks are used in improving conditions in the practical field and real life which lead researchers and developers to further research it and work into improving this field. These networks consist of sensor nodes that can help acquire data and information about temperature and pressure dependent on the environment of the location which are sent from. After all that, we are bounded by a really important factor which can determine everything which is Energy. Since sensor nodes send data and information to web applications, they need an energy source to operate. Their main energy source is their batteries which offer limited source of energy. Hence, various protocols are introduced to help in many parameters of a wireless sensor network such as increasing lifetime and decreasing consumption of energy, in other words, increasing the Energy Efficiency (EF). In this paper, we evaluate consumption of average energy for various protocols used in this context after each complete logical round for these protocols, such as Energy Efficient Clustering Scheme and Stable Election Protocol. Finally, we used Matlab tool to generate results which indicate that the protocol used in this paper is efficient and reliable

    A Hybrid Adaptive Protocol for Reliable Data Delivery in WSNs with Multiple Mobile Sinks

    Get PDF
    In this paper we deal with reliable and energy-efficient data delivery in sparse Wireless Sensor Networks with multiple Mobile Sinks (MSs). This is a critical task, especially when MSs move randomly, as interactions with sensor nodes are unpredictable, typically of short duration, and affected by message losses. In this paper we propose an adaptive data delivery protocol that combines efficiently erasure coding with an ARQ scheme. The key features of the proposed protocol are: (i) the use of redundancy to cope efficiently with message losses, and (ii) the ability of adapting the level of redundancy based on feedbacks sent back by MSs through ACKs. We observed by simulation that our protocol outperforms an alternative protocol that relies only on an ARQ scheme, even when there is a single MS. We also validated our simulation results through a set of experimental measurements based on real sensor nodes. Our results show that the adoption of encoding techniques is beneficial to energy-efficient (and reliable) data delivery in WSNs with Mobile Sinks

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI

    RMEER: Reliable Multi-path Energy Efficient Routing Protocol for Underwater Wireless Sensor Network

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) is interesting area for researchers.To extract the information from seabed to water surface the the majority numbers of routing protocols has been introduced. The design of routing protocols faces many challenges like deployment of sensor nodes, controlling of node mobility, development of efficient route for data forwarding, prolong the battery power of the sensor nodes, and removal of void nodes from active data forwarding paths. This research article focuses the design of the Reliable Multipath Energy Efficient Routing (RMEER) which develops the efficient route between sensor nodes, and prolongs the battery life of the nodes. RMEER is a scalable and robust protocol which utilizes the powerful fixed courier nodes in order to enhance the network throughput, data delivery ratio, network lifetime and reduces the end-to-end delay. RMEER is also an energy efficient routing protocol for saving the energy level of the nodes. We have used the NS2.30 simulator with AquaSim package for performance analysis of RMEER.We observed that the simulation performance of RMEER is better than D-DBR protocol

    Implementation and Deployment Evaluation of the DMAMAC Protocol for Wireless Sensor Actuator Networks

    Get PDF
    The increased application of wireless technologies including Wireless Sensor Actuator Networks (WSAN) in industry has given rise to a plethora of protocol designs. These designs target metrics ranging from energy efficiency to real-time constraints. Protocol design typically starts with a requirements specification, and continues with analytic and model-based simulation analysis. State-of- the-art network simulators provide extensive physical environment emulation, but still have limitations due to model abstractions. Deployment testing on actual hardware is therefore vital in order to validate implementability and usability in the real environment. The contribution of this article is a deployment testing of the Dual-Mode Adaptive MAC (DMAMAC) protocol. DMAMAC is an energy efficient protocol recently proposed for real-time process control applications and is based on Time Division Multiple Access (TDMA) in conjunction with dual-mode operation. A main challenge in implementing DMAMAC is the use of a dynamic superframe structure. We have successfully implemented the protocol on the Zolertia Z1 platform using TinyOS (2x). Our scenario- based evaluation shows minimal packet loss and smooth mode-switch operation, thus indicating a reliable implementation of the DMAMAC protocol.publishedVersio
    corecore