259 research outputs found

    A Reconfigurable Depth-Wise Convolution Module for Heterogeneously Quantized DNNs

    Get PDF
    In Deep Neural Networks (DNN), the depth-wise separable convolution has often replaced the standard 2D convolution having much fewer parameters and operations. Another common technique to squeeze DNNs is heterogeneous quantization, which uses a different bitwidth for each layer. In this context we propose for the first time a novel Reconfigurable Depth-wise convolution Module (RDM), which uses multipliers that can be reconfigured to support 1, 2 or 4 operations at the same time at increasingly lower precision of the operands. We leveraged High Level Synthesis to produce five RDM variants with different channels parallelism to cover a wide range of DNNs. The comparisons with a non-configurable Standard Depth-wise convolution module (SDM) on a CMOS FDSOI 28-nm technology show a significant latency reduction for a given silicon area for the low-precision configurations

    HyPar: Towards Hybrid Parallelism for Deep Learning Accelerator Array

    Get PDF
    With the rise of artificial intelligence in recent years, Deep Neural Networks (DNNs) have been widely used in many domains. To achieve high performance and energy efficiency, hardware acceleration (especially inference) of DNNs is intensively studied both in academia and industry. However, we still face two challenges: large DNN models and datasets, which incur frequent off-chip memory accesses; and the training of DNNs, which is not well-explored in recent accelerator designs. To truly provide high throughput and energy efficient acceleration for the training of deep and large models, we inevitably need to use multiple accelerators to explore the coarse-grain parallelism, compared to the fine-grain parallelism inside a layer considered in most of the existing architectures. It poses the key research question to seek the best organization of computation and dataflow among accelerators. In this paper, we propose a solution HyPar to determine layer-wise parallelism for deep neural network training with an array of DNN accelerators. HyPar partitions the feature map tensors (input and output), the kernel tensors, the gradient tensors, and the error tensors for the DNN accelerators. A partition constitutes the choice of parallelism for weighted layers. The optimization target is to search a partition that minimizes the total communication during training a complete DNN. To solve this problem, we propose a communication model to explain the source and amount of communications. Then, we use a hierarchical layer-wise dynamic programming method to search for the partition for each layer.Comment: To appear in the 2019 25th International Symposium on High-Performance Computer Architecture (HPCA 2019

    Number Systems for Deep Neural Network Architectures: A Survey

    Full text link
    Deep neural networks (DNNs) have become an enabling component for a myriad of artificial intelligence applications. DNNs have shown sometimes superior performance, even compared to humans, in cases such as self-driving, health applications, etc. Because of their computational complexity, deploying DNNs in resource-constrained devices still faces many challenges related to computing complexity, energy efficiency, latency, and cost. To this end, several research directions are being pursued by both academia and industry to accelerate and efficiently implement DNNs. One important direction is determining the appropriate data representation for the massive amount of data involved in DNN processing. Using conventional number systems has been found to be sub-optimal for DNNs. Alternatively, a great body of research focuses on exploring suitable number systems. This article aims to provide a comprehensive survey and discussion about alternative number systems for more efficient representations of DNN data. Various number systems (conventional/unconventional) exploited for DNNs are discussed. The impact of these number systems on the performance and hardware design of DNNs is considered. In addition, this paper highlights the challenges associated with each number system and various solutions that are proposed for addressing them. The reader will be able to understand the importance of an efficient number system for DNN, learn about the widely used number systems for DNN, understand the trade-offs between various number systems, and consider various design aspects that affect the impact of number systems on DNN performance. In addition, the recent trends and related research opportunities will be highlightedComment: 28 page

    Reconfigurable acceleration of Recurrent Neural Networks

    Get PDF
    Recurrent Neural Networks (RNNs) have been successful in a wide range of applications involving temporal sequences such as natural language processing, speech recognition and video analysis. However, RNNs often require a significant amount of memory and computational resources. In addition, the recurrent nature and data dependencies in RNN computations can lead to system stall, resulting in low throughput and high latency. This work describes novel parallel hardware architectures for accelerating RNN inference using Field-Programmable Gate Array (FPGA) technology, which considers the data dependencies and high computational costs of RNNs. The first contribution of this thesis is a latency-hiding architecture that utilizes column-wise matrix-vector multiplication instead of the conventional row-wise operation to eliminate data dependencies and improve the throughput of RNN inference designs. This architecture is further enhanced by a configurable checkerboard tiling strategy which allows large dimensions of weight matrices, while supporting element-based parallelism and vector-based parallelism. The presented reconfigurable RNN designs show significant speedup over CPU, GPU, and other FPGA designs. The second contribution of this thesis is a weight reuse approach for large RNN models with weights stored in off-chip memory, running with a batch size of one. A novel blocking-batching strategy is proposed to optimize the throughput of large RNN designs on FPGAs by reusing the RNN weights. Performance analysis is also introduced to enable FPGA designs to achieve the best trade-off between area, power consumption and performance. Promising power efficiency improvement has been achieved in addition to speeding up over CPU and GPU designs. The third contribution of this thesis is a low latency design for RNNs based on a partially-folded hardware architecture. It also introduces a technique that balances initiation interval of multi-layer RNN inferences to increase hardware efficiency and throughput while reducing latency. The approach is evaluated on a variety of applications, including gravitational wave detection and Bayesian RNN-based ECG anomaly detection. To facilitate the use of this approach, we open source an RNN template which enables the generation of low-latency FPGA designs with efficient resource utilization using high-level synthesis tools.Open Acces
    • …
    corecore