401 research outputs found

    Silicon optical modulators

    Get PDF
    Optical technology is poised to revolutionise short reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such interconnect is the optical modulator. Modulators have been improved dramatically in recent years. Most notably the bandwidth has increased from the MHz to the multi GHz regime in little more than half a decade. However, the demands of optical interconnect are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics. Minimising metrics such as the energy per bit, and device footprint, whilst maximising bandwidth and modulation depth are non trivial demands. All of this must be achieved with acceptable thermal tolerance and optical spectral width, using CMOS compatible fabrication processes. Here we discuss the techniques that have, and will, be used to implement silicon optical modulators, as well as the outlook for these devices, and the candidate solutions of the future

    Modeling of Silicon Photonic Devices for Optical Interconnect Transceiver Circuit Design

    Get PDF
    Optical interconnect system efficiency is dependent on the ability to optimize the transceiver circuitry for low-power and high-bandwidth operation, motivating co-simulation environments with compact optical device simulation models. This chapter presents compact Verilog-A silicon carrier-injection and carrier-depletion ring modulator models which accurately capture both nonlinear electrical and optical dynamics. Experimental verification of the carrier-injection ring modulator model is performed both at 8 Gb/s with symmetric drive signals to study the impact of pre-emphasis pulse duration, pulse depth, and dc bias, and at 9 Gb/s with a 65-nm CMOS driver capable of asymmetric pre-emphasis pulse duration. Experimental verification of the carrier-depletion ring modulator model is performed at 25 Gb/s with a 65-nm CMOS driver capable of asymmetric equalization

    Single chip photonic deep neural network with accelerated training

    Full text link
    As deep neural networks (DNNs) revolutionize machine learning, energy consumption and throughput are emerging as fundamental limitations of CMOS electronics. This has motivated a search for new hardware architectures optimized for artificial intelligence, such as electronic systolic arrays, memristor crossbar arrays, and optical accelerators. Optical systems can perform linear matrix operations at exceptionally high rate and efficiency, motivating recent demonstrations of low latency linear algebra and optical energy consumption below a photon per multiply-accumulate operation. However, demonstrating systems that co-integrate both linear and nonlinear processing units in a single chip remains a central challenge. Here we introduce such a system in a scalable photonic integrated circuit (PIC), enabled by several key advances: (i) high-bandwidth and low-power programmable nonlinear optical function units (NOFUs); (ii) coherent matrix multiplication units (CMXUs); and (iii) in situ training with optical acceleration. We experimentally demonstrate this fully-integrated coherent optical neural network (FICONN) architecture for a 3-layer DNN comprising 12 NOFUs and three CMXUs operating in the telecom C-band. Using in situ training on a vowel classification task, the FICONN achieves 92.7% accuracy on a test set, which is identical to the accuracy obtained on a digital computer with the same number of weights. This work lends experimental evidence to theoretical proposals for in situ training, unlocking orders of magnitude improvements in the throughput of training data. Moreover, the FICONN opens the path to inference at nanosecond latency and femtojoule per operation energy efficiency.Comment: 21 pages, 10 figures. Comments welcom

    Silicon photonic modulators for PAM transmissions

    Get PDF
    High-speed optical interconnects are crucial for both data centers and high performance computing systems. High power consumption and limited device bandwidth have hindered the move to higher optical transmission speeds. Integrated optical transceivers in silicon photonics (SiP) using pulse-amplitude modulation (PAM) are a promising solution to increase data rates. In this paper, we review recent progress in SiP for PAM transmissions. We focus on materials and technologies available CMOS-compatible photonics processes. Performance metrics of SiP modulators and crucial considerations for high-speed PAM transmissions are discussed. Various driving strategies to achieve optical PAM signals are presented. Some of the state-of-the-art SiP PAM modulators and integrated transmitters are reviewed

    Cascaded uncoupled dual-ring modulator

    Full text link
    We demonstrate that by coherent driving two uncoupled rings in same direction, the effective photon circulating time in the dual ring modulator is reduced, with increased modulation quality. The inter-ring detuning dependent photon dynamics, Q-factor, extinction ratio and optical modulation amplitude of two cascaded silicon ring resonators are studied and compared with that of a single ring modulator. Experimentally measured eye diagrams, together with coupled mode theory simulations, demonstrate the enhancement of dual ring configuration at 20 Gbps with a Q ~ 20,000

    Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators

    Get PDF
    Advanced optical interconnects require high-speed links, which can be achieved by combining high channel rates with wavelength-division multiplexing (WDM). We report a multi-channel transmitter using cascaded microring modulators (MRMs) in silicon photonics. One MRM works as a flexible-grid optical comb generator, while the others work as channel modulators. With a single-wavelength laser input, we achieve flexible channel spacing (up to 25 GHz) with a tone-to-noise ratio (TNR) above 54 dB, all at low power consumption (less than 4.6 mW). We examine experimentally multichannel transmission modulating data onto adjacent comb lines without significant signal crosstalk. This single-laser, flexible-grid WDM transmitter is a scalable solution: more comb lines can be obtained using uncoupled MRMs in series. This is the first demonstration of monolithic integration of a comb generator and multi-channel modulators for ultracompact, power-efficient WDM photonic interconnects

    Silicon Nano-Photonic Devices

    Get PDF
    corecore