527 research outputs found

    MORA: an Energy-Aware Slack Reclamation Scheme for Scheduling Sporadic Real-Time Tasks upon Multiprocessor Platforms

    Full text link
    In this paper, we address the global and preemptive energy-aware scheduling problem of sporadic constrained-deadline tasks on DVFS-identical multiprocessor platforms. We propose an online slack reclamation scheme which profits from the discrepancy between the worst- and actual-case execution time of the tasks by slowing down the speed of the processors in order to save energy. Our algorithm called MORA takes into account the application-specific consumption profile of the tasks. We demonstrate that MORA does not jeopardize the system schedulability and we show by performing simulations that it can save up to 32% of energy (in average) compared to execution without using any energy-aware algorithm.Comment: 11 page

    Energy-Efficient Scheduling for Homogeneous Multiprocessor Systems

    Get PDF
    We present a number of novel algorithms, based on mathematical optimization formulations, in order to solve a homogeneous multiprocessor scheduling problem, while minimizing the total energy consumption. In particular, for a system with a discrete speed set, we propose solving a tractable linear program. Our formulations are based on a fluid model and a global scheduling scheme, i.e. tasks are allowed to migrate between processors. The new methods are compared with three global energy/feasibility optimal workload allocation formulations. Simulation results illustrate that our methods achieve both feasibility and energy optimality and outperform existing methods for constrained deadline tasksets. Specifically, the results provided by our algorithm can achieve up to an 80% saving compared to an algorithm without a frequency scaling scheme and up to 70% saving compared to a constant frequency scaling scheme for some simulated tasksets. Another benefit is that our algorithms can solve the scheduling problem in one step instead of using a recursive scheme. Moreover, our formulations can solve a more general class of scheduling problems, i.e. any periodic real-time taskset with arbitrary deadline. Lastly, our algorithms can be applied to both online and offline scheduling schemes.Comment: Corrected typos: definition of J_i in Section 2.1; (3b)-(3c); definition of \Phi_A and \Phi_D in paragraph after (6b). Previous equations were correct only for special case of p_i=d_

    ILP-based approaches to partitioning recurrent workloads upon heterogeneous multiprocessors

    Get PDF
    The problem of partitioning systems of independent constrained-deadline sporadic tasks upon heterogeneous multiprocessor platforms is considered. Several different integer linear program (ILP) formulations of this problem, offering different tradeoffs between effectiveness (as quantified by speedup bound) and running time efficiency, are presented

    Power-Aware Real-Time Scheduling upon Identical Multiprocessor Platforms

    Get PDF
    In this paper, we address the power-aware scheduling of sporadic constrained-deadline hard real-time tasks using dynamic voltage scaling upon multiprocessor platforms. We propose two distinct algorithms. Our first algorithm is an off-line speed determination mechanism which provides an identical speed for each processor. That speed guarantees that all deadlines are met if the jobs are scheduled using EDF. The second algorithm is an on-line and adaptive speed adjustment mechanism which reduces the energy consumption while the system is running.Comment: The manuscript corresponds to the final version of SUTC 2008 conferenc

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper
    • …
    corecore