532 research outputs found

    A Multipath Routing Protocol Based on Clustering and Ant Colony Optimization for Wireless Sensor Networks

    Get PDF
    For monitoring burst events in a kind of reactive wireless sensor networks (WSNs), a multipath routing protocol (MRP) based on dynamic clustering and ant colony optimization (ACO) is proposed. Such an approach can maximize the network lifetime and reduce the energy consumption. An important attribute of WSNs is their limited power supply, and therefore some metrics (such as energy consumption of communication among nodes, residual energy, path length) were considered as very important criteria while designing routing in the MRP. Firstly, a cluster head (CH) is selected among nodes located in the event area according to some parameters, such as residual energy. Secondly, an improved ACO algorithm is applied in the search for multiple paths between the CH and sink node. Finally, the CH dynamically chooses a route to transmit data with a probability that depends on many path metrics, such as energy consumption. The simulation results show that MRP can prolong the network lifetime, as well as balance of energy consumption among nodes and reduce the average energy consumption effectively

    A Review of Various Swarm Intelligence Based Routing Protocols for Iot

    Get PDF
    The paper provides insight into various swarm intelligence based routing protocols for Internet of Things (IoT), which are currently available for the Mobile Ad-hoc networks (MANETs) and wireless sensor networks (WSNs). There are several issues which are limiting the growth of Internet of Things. These include the reliability, link failures, routing, heterogeneity etc. The MANETs and WSNs routing issues impose almost same requirements for IoT routing mechanism. The recent work of the worldwide researchers is focused on this area. protocols are based on the principles of swarm intelligence. The swarm intelligence is applied to achieve the optimality and the efficiency in solving the complex, multi-hop and dynamic requirements of the wireless networks. The application of the ACO technique tries to provide answers to many routing issues. Using the swarm intelligence and ant colony optimization principles, it has been seen that, the protocols’ efficiency definitely increases and also provides more scope for the development of more robust, reliable and efficient routing protocols for the IoT. As the various standard protocols available for MANETs and WSNs are not reliable enough, the paper finds the need of some efficient routing algorithms for IoT

    A Trust Based Congestion Aware Hybrid Ant Colony Optimization Algorithm for Energy Efficient Routing in Wireless Sensor Networks (TC-ACO)

    Full text link
    Congestion is a problem of paramount importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources. Sensor nodes are prone to failure and the misbehavior of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols. Unfortunately most of the researchers have tried to make the routing schemes energy efficient without considering congestion factor and the effect of the faulty nodes. In this paper we have proposed a congestion aware, energy efficient, routing approach that utilizes Ant Colony Optimization algorithm, in which faulty nodes are isolated by means of the concept of trust. The merits of the proposed scheme are verified through simulations where they are compared with other protocols.Comment: 6 pages, 5 figures and 2 tables (Conference Paper

    A Novel Approach for Enhancing Routing in Wireless Sensor Networks using ACO Algorithm

    Get PDF
    Wireless Sensors Network (WSN) is an emergent technology that aims to offer innovative capacities. In the last decade, the use of these networks increased in various fields like military, science, and health due to their fast and inexpressive deployment and installation. However, the limited sensor battery lifetime poses many technical challenges and affects essential services like routing. This issue is a hot topic of search, many researchers have proposed various routing protocols aimed at reducing the energy consumption in WSNs. The focus of this work is to investigate the effectiveness of integrating ACO algorithm with routing protocols in WSNs. Moreover, it presents a novel approach inspired by ant colony optimization (ACO) to be deployed as a new routing protocol that addresses key challenges in wireless sensor networks. The proposed protocol can significantly minimize nodes energy consumption, enhance the network lifetime, reduce latency, and expect performance in various scenarios

    KFOA: K-mean clustering, Firefly based data rate Optimization and ACO routing for Congestion Control in WSN

    Get PDF
    Wireless sensor network (WSN) is assortment of sensor nodes proficient in environmental information sensing, refining it and transmitting it to base station in sovereign manner. The minute sensors communicate themselves to sense and monitor the environment. The main challenges are limited power, short communication range, low bandwidth and limited processing. The power source of these sensor nodes are the main hurdle in design of energy efficient network. The main objective of the proposed clustering and data transmission algorithm is to augment network performance by using swarm intelligence approach. This technique is based on K-mean based clustering, data rate optimization using firefly optimization algorithm and Ant colony optimization based data forwarding. The KFOA is divided in three parts: (1) Clustering of sensor nodes using K-mean technique and (2) data rate optimization for controlling congestion and (3) using shortest path for data transmission based on Ant colony optimization (ACO) technique. The performance is analyzed based on two scenarios as with rate optimization and without rate optimization. The first scenario consists of two operations as k- mean clustering and ACO based routing. The second scenario consists of three operations as mentioned in KFOA. The performance is evaluated in terms of throughput, packet delivery ratio, energy dissipation and residual energy analysis. The simulation results show improvement in performance by using with rate optimization technique

    Multipath Ant Colony Optimization Algorithm (MBEEACO) to Improve the Life Time of MANET

    Get PDF
    MANET selects a path with least number of intermediate nodes to reach the destination node. As the distance between each node increases, the quantity of transmission control increases. The power level of nodes affects the simplicity with which a route is constituted between a couple of nodes. This research paper utilizes the swarm intelligence technique through the artificial bee colony (ABC) algorithm to optimize the energy consumption in a dynamic source routing (DSR) protocol in MANET. The ABC algorithm is used to identify the optimal path from the source to the destination to overcome energy problems. The performance of the proposed MBEEACO algorithm is compared with DSR and bee-inspired protocols. The comparison was conducted based on average energy consumption, average throughput, average end-to-end delay, routing overhead, and packet delivery ratio performance metrics, varying the node speed and packet size. The proposed MBEEACO algorithm is superior in performance than other protocols in terms of energy conservation and delay degradation relating to node speed and packet size

    Biologically Inspired Energy Efficient Routing Protocol in Disaster Situation

    Get PDF
    Wireless sensor network (WSN) plays a crucial role in many industrial, commercial, and social applications. However, increasing the number of nodes in a WSN increases network complexity, making it harder to acquire all relevant data in a timely way. By assuming the end node as a base station, we devised an Artificial Ant Routing (AAR) method that overcomes such network difficulties and finds an ideal routing that gives an easy way to reach the destination node in our situation. The goal of our research is to establish WSN parameters that are based on the biologically inspired Ant Colony Optimization (ACO) method. The proposed AAR provides the alternating path in case of congestion and high traffic requirement. In the event of node failures in a wireless network, the same algorithm enhances the efficiency of the routing path and acts as a multipath data transmission approach. We simulated network factors including Packet Delivery Ratio (PDR), Throughput, and Energy Consumption to achieve this. The major objective is to extend the network lifespan while data is being transferred by avoiding crowded areas and conserving energy by using a small number of nodes. The result shows that AAR is having improved performance parameters as compared to LEACH, LEACH-C, and FCM-DS-ACO

    Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks

    Get PDF
    Currently, wireless sensor networks (WSNs) are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC) algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO) is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO) and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP) hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i) selection of optimal number of subregions and further subregion parts, (ii) cluster head selection using ABC algorithm, and (iii) efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS). The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively

    BSRS: Best Stable Route Selection Algorithm for Wireless Sensor Network Applications

    Get PDF
    Topological changes in sensor networks frequently render routing paths unusable. Such recurrent path failures have detrimental effects on the network ability to support QoS-driven services. Because of connectivity richness in sensor networks, there often exist multiple paths between a source and a destination. Since many applications require uninterrupted connectivity of a session, the ability to find long-living paths can be very useful. In this paper, we propose Best Stable Route Selection (BSRS) approach based on Artificial Bee Colony based search algorithm, ensures that contributes stable quality performance of network and to calculate the best stable path services randomly based on QoS parameter requirements and existing circulation load; so that efficient route selection can easily capture by designing of proposed BSRS approach. The implementation of the proposed BSRS technique is implemented using NS2 simulation environment and the AODV routing protocol is used to incorporate the proposed algorithm. The experimental results are measured in terms of end to end delay, throughput, packet delivery ratio, and energy consumption and routing overhead. The results show the proposed BSRS algorithm improves the flexibility of network node and performance of network when multiple inefficient paths exist

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime
    • …
    corecore