1,037 research outputs found

    Energy Efficient Pipeline ADCs Using Ring Amplifiers

    Full text link
    Pipeline ADCs require accurate amplification. Traditionally, an operational transconductance amplifier (OTA) configured as a switched-capacitor (SC) amplifier performs such amplification. However, traditional OTAs limit the power efficiency of ADCs since they require high quiescent current for slewing and bandwidth. In addition, it is difficult to design low-voltage OTAs in modern, scaled CMOS. The ring amplifier is an energy efficient and high output swing alternative to an OTA for SC circuits which is basically a three-stage inverter amplifier stabilized in a feedback configuration. However, the conventional ring amplifier requires external biases, which makes the ring amplifier less practical when we consider process, supply voltage, and temperature (PVT) variation. In this dissertation, three types of innovative ring amplifiers are presented and verified with state-of-the-art energy efficient pipeline ADCs. These new ring amplifiers overcome the limitations of the conventional ring amplifier and further improve energy efficiency. The first topic of this dissertation is a self-biased ring amplifier that makes the ring amplifier more practical and power efficient, while maintaining the benefits of efficient slew-based charging and an almost rail-to-rail output swing. In addition, the ring amplifiers are also used as comparators in the 1.5b sub-ADCs by utilizing the unique characteristics of the ring amplifier. This removes the need for dedicated comparators in sub-ADCs, thus further reducing the power consumption of the ADC. The prototype 10.5b 100 MS/s comparator-less pipeline ADC with the self-biased ring amplifiers has measured SNDR, SNR and SFDR of 56.6 dB (9.11b), 57.5 dB and 64.7 dB, respectively, and consumes 2.46 mW, which results in Walden Figure-of-Merit (FoM) of 46.1 fJ/ conversion∙step. The second topic is a fully-differential ring amplifier, which solves the problems of single-ended ring amplifiers while maintaining the benefits of the single-ended ring amplifiers. This differential ring-amplifier is applied in a 13b 50 MS/s SAR-assisted pipeline ADC. Furthermore, an improved capacitive DAC switching method for the first stage SAR reduces the DAC linearity errors and switching energy. The prototype ADC achieves measured SNDR, SNR and SFDR of 70.9 dB (11.5b), 71.3 dB and 84.6 dB, respectively, and consumes 1 mW. This measured performance is equivalent to Walden and Schreier FoMs of 6.9 fJ/conversion∙step and 174.9 dB, respectively. Finally, a four-stage fully-differential ring amplifier improves the small-signal gain to over 90 dB without compromising speed. In addition, a new auto-zero noise filtering method reduces noise without consuming additional power. This is more area efficient than the conventional auto-zero noise folding reduction technique. A systematic mismatch free SAR CDAC layout method is also presented. The prototype 15b 100 MS/s calibration-free SAR-assisted pipeline ADC using the four-stage ring amplifier achieves 73.2 dB SNDR (11.9b) and 90.4 dB SFDR with a 1.1 V supply. It consumes 2.3 mW resulting in Schreier FoM of 176.6 dB.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138759/1/yonglim_1.pd

    Ultra-Low-Voltage IC Design Methods

    Get PDF
    The emerging nanoscale technologies inherently offer transistors working with low voltage levels and are optimized for low-power operation. However, these technologies lack quality electronic components vital for reliable analog and/or mixed-signal design (e.g., resistor, capacitor, etc.) as they are predominantly used in high-performance digital designs. Moreover, the voltage headroom, ESD properties, the maximum current densities, parasitic effects, process fluctuations, aging effects, and many other parameters are superior in verified-by-time CMOS processes using planar transistors. This is the main reason, why low-voltage, low-power high-performance analog and mixed-signal circuits are still being designed in mature process nodes. In the proposed chapter, we bring an overview of main challenges and design techniques effectively applicable for ultra-low-voltage and low-power analog integrated circuits in nanoscale technologies. New design challenges and limitations linked with a low value of the supply voltage, the process fluctuation, device mismatch, and other effects are discussed. In the later part of the chapter, conventional and unconventional design techniques (bulk-driven approach, floating-gate, dynamic threshold, etc.) to design analog integrated circuits towards ultra-low-voltage systems and applications are described. Examples of ultra-low-voltage analog ICs blocks (an operational amplifier, a voltage comparator, a charge pump, etc.) designed in a standard CMOS technology using the unconventional design approach are presented

    Low-Power Analog Circuits for Sub-Band Speech Processing

    Get PDF
    The need for efficient electronics has been increasing by the day, as have the constraints on power and size of the devices. Also the increase in use of mobile and wearable electronics has been leading to innovative methods to conserve power and increase functionality. The traditional approach of signal processing heavily relies on the Digital Signal Processing (DSP) hardware to perform most of the tasks, which has lead to power-hungry circuits. Use of analog front-end devices could prove to be efficient, since most of the real-world data is analog and since the DSP could be spared for more application-specific tasks within the system, thereby resulting in more efficient mixed-signal systems.;The focus in this work is to develop an analog front-end for speech-processing applications with inspiration from biology, and trying to mimic human auditory perception techniques. The circuits are designed in 600nm, 350nm and 180nm CMOS processes and are biased in the sub-threshold region to consume low-power. Also, various modules of the system are connected using multiplexing circuits to allow post-fabrication reconfigurability to suit various applications. These circuits are biased using a network of floating-gate transistors which allow reconfigurability and increased bias accuracy. This thesis mainly describes two modules of the analog front-end used for speech processing: derivative circuit and voltage-mode subtractor circuit, which are used for processing spectrally decomposed signals. These circuits could be used for applications like audio analysis or event detection

    Noise-Shaping SAR ADCs: From Discrete Time to Continuous Time

    Get PDF
    Noise-shaping (NS) SAR ADCs become popular recently, thanks to their low-power and high-resolution features. This article first summarizes and benchmarks different discrete-time (DT) NS-SAR implementations in literature. An open-loop duty-cycled residue amplifier is selected as a power-efficient solution to realize high residue gain. Then, a digital-predicted mismatch error shaping technique is introduced to improve the DAC linearity. The proposed DT NS-SAR ADC achieves 80 dB SNDR and 98 dB SFDR in a 31.25 kHz bandwidth while consuming 7.3 μW. Next, the NS-SAR architecture is extended from DT operation to continuous-time (CT) operation. The ADC sampling switch is removed, and the loop filter is duty cycled to realize the CT NS-SAR operation. Compared to DT designs, the CT NS-SAR ADC is easy to drive and has an inherent anti-aliasing function. As a proof of concept, the proposed CT NS-SAR ADC achieves 77 dB SNDR and 86 dB SFDR in a 62.5 kHz bandwidth with a power consumption of 13.5 μW

    A 7.3-μ W 13-ENOB 98-dB SFDR Noise-Shaping SAR ADC With Duty-Cycled Amplifier and Mismatch Error Shaping

    Get PDF
    This article presents a second-order noise-shaping successive-approximation-register (SAR) analog-to-digital converter (ADC) that employs a duty-cycled amplifier and digital-predicted mismatch error shaping (MES). The loop filter is composed of an active amplifier and two cascaded passive integrators to provide a theoretical 30-dB in-band noise attenuation. The amplifier achieves 18\times gain in a power-efficient way thanks to its inverter-based topology and duty-cycled operation. The capacitor mismatch in the digital-to-analog converter (DAC) array is mitigated by first-order MES. A two-level digital prediction scheme is adopted with MES to avoid input range loss. Fabricated in 65-nm CMOS technology, the prototype achieves 80-dB peak signal-to-noise-and-distortion-ratio (SNDR) and 98-dB peak spurious-free-dynamic-range (SFDR) in a 31.25-kHz bandwidth with 16\times oversampling ratio (OSR), leading to a Schreier figure-of-merit (FoM) of 176.3 dB and a Walden FoM of 14.3 fJ/conversion-step.</p

    Solid-state imaging : a critique of the CMOS sensor

    Get PDF

    Rail-to-Rail Operational in Low-Power Reconfigurable Analog Circuitry

    Get PDF
    Analog signal processing (ASP) can be used to decrease energy consumption by several orders of magnitude over completely digital applications. Low-power field programmable analog arrays (FPAA) have been previously used by analog designers to decrease energy consumption. Combining ASP with an FPAA, energy consumption of these systems can be further reduced. For ASP to be most functional, it must achieve rail-to-rail operation to maintain a high dynamic range. This work strives to further reduce power consumption in reconfigurable analog circuitry by presenting a novel data converter that utilizes ASP and rail-to-rail operation. Rail-to-Rail operation is achieved in the data converter with the use of an operational amplifier presented in this work. This efficient yet elementary data converter has been fabricated in a 0.5μ\mum standard CMOS process. Additionally, this work looks deeper into the challenges of students working remotely, how MATLAB can be used to create circuit design tools, and how these developmental tools can be used by circuit design students
    • …
    corecore