12,290 research outputs found

    An Energy-Efficient Bit Allocation Scheme in Wireless Sensor Networks

    Get PDF
    In wireless sensor networks (WSN), a large number of sensor nodes which are capable of sensing, data processing and communicating are densely deployed in an area to measure some physical phenomenon. Generally, wireless sensor nodes carry very limited irreplaceable power sources. Thus, two primary concerns in WSN are to save the overall energy consumption and to prolong the network lifetime, namely the time when all the nodes are functional. Motivated by these two concerns, this thesis mainly focuses on the energy efficient transmission and bit allocation schemes in multi-source single-sink WSN from an information theoretic point of view. Specifically, this thesis investigates the interactions between source coding and channel coding to gain cooperation between them in terms of energy efficiency. For transmission through additive white Gaussian noise (AWGN) channel with path loss, this work shows that the overall energy consumption can be minimized if each source transmits with minimum power and cooperates with other sensors in TDMA (time-division multiple access) mode. From the source coding perspective, the Slepian-Wolf coding theorem is applied for efficient bit allocation since sources are usually highly correlated in WSN. Combining the transmission with correlated source coding, we derive an optimal closed form bit allocation scheme to minimize the overall energy consumption. The fundamental idea is to allocate more bits to the nodes with better channel conditions and less bits to the nodes with worse channel conditions. Based on this scheme, we further maximize the network lifetime and develop a heuristic algorithm to average the distribution of energy consumption among all sensors. Both analytical and simulation results are presented to show the superiority of our schemes

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    A Non-Cooperative Game Theoretical Approach For Power Control In Virtual MIMO Wireless Sensor Network

    Full text link
    Power management is one of the vital issue in wireless sensor networks, where the lifetime of the network relies on battery powered nodes. Transmitting at high power reduces the lifetime of both the nodes and the network. One efficient way of power management is to control the power at which the nodes transmit. In this paper, a virtual multiple input multiple output wireless sensor network (VMIMO-WSN)communication architecture is considered and the power control of sensor nodes based on the approach of game theory is formulated. The use of game theory has proliferated, with a broad range of applications in wireless sensor networking. Approaches from game theory can be used to optimize node level as well as network wide performance. The game here is categorized as an incomplete information game, in which the nodes do not have complete information about the strategies taken by other nodes. For virtual multiple input multiple output wireless sensor network architecture considered, the Nash equilibrium is used to decide the optimal power level at which a node needs to transmit, to maximize its utility. Outcome shows that the game theoretic approach considered for VMIMO-WSN architecture achieves the best utility, by consuming less power.Comment: 12 pages, 8 figure

    Optimal Quantization in Energy-Constrained Sensor Networks under Imperfect Transmission

    Get PDF
    This paper addresses the optimization of quantization at local sensors under strict energy constraint and imperfect transmission to improve the reconstruction performance at the fusion center in the wireless sensor networks (WSNs). We present optimized quantization scheme including the optimal quantization bit rate and the optimal transmission power allocation among quantization bits for BPSK signal and binary orthogonal signal with envelope detection, respectively. The optimization of the quantization is formulated as a convex problem and the optimal solution is derived analytically in both cases. Simulation results demonstrate the effectiveness of our proposed quantization schemes

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    An Outline of Security in Wireless Sensor Networks: Threats, Countermeasures and Implementations

    Full text link
    With the expansion of wireless sensor networks (WSNs), the need for securing the data flow through these networks is increasing. These sensor networks allow for easy-to-apply and flexible installations which have enabled them to be used for numerous applications. Due to these properties, they face distinct information security threats. Security of the data flowing through across networks provides the researchers with an interesting and intriguing potential for research. Design of these networks to ensure the protection of data faces the constraints of limited power and processing resources. We provide the basics of wireless sensor network security to help the researchers and engineers in better understanding of this applications field. In this chapter, we will provide the basics of information security with special emphasis on WSNs. The chapter will also give an overview of the information security requirements in these networks. Threats to the security of data in WSNs and some of their counter measures are also presented
    • …
    corecore