996 research outputs found

    Unleashing Exposed Terminals in Enterprise WLANs: A Rate Adaptation Approach

    Get PDF
    The increasing availability of inexpensive off-the-shelf 802.11 hardware has made it possible to deploy access points (APs) densely to ensure the coverage of complex enterprise environments such as business and college campuses. However, dense AP deployment often leads to increased level of wireless contention, resulting in low system throughput. A promising approach to address this issue is to enable the transmission concurrency of exposed terminals in which two senders lie in the range of one another but do not interfere each other\u27s receiver. However, existing solutions ignore the rate diversity of 802.11 and hence cannot fully exploit concurrent transmission opportunities in a WLAN. In this paper, we present TRACK - Transmission Rate Adaptation for Colliding linKs, a novel protocol for harnessing exposed terminals with a rate adaptation approach in enterprise WLANs. Using measurement-based channel models, TRACK can optimize the bit rates of concurrent links to improve system throughput while maintaining link fairness. Our extensive experiments on a testbed of 17 nodes show that TRACK improves system throughput by up to 67% and 35% over 802.11 CSMA and conventional approaches of harnessing exposed terminals

    QUALITY-OF-SERVICE PROVISIONING FOR SMART CITY APPLICATIONS USING SOFTWARE-DEFINED NETWORKING

    Get PDF
    In the current world, most cities have WiFi Access Points (AP) in every nook and corner. Hence upraising these cities to the status of a smart city is a more easily achievable task than before. Internet-of-Things (IoT) connections primarily use WiFi standards to form the veins of a smart city. Unfortunately, this vast potential of WiFi technology in the genesis of smart cities is somehow compromised due to its failure in meeting unique Quality-of-Service (QoS) demands of smart city applications. Out of the following QoS factors; transmission link bandwidth, packet transmission delay, jitter, and packet loss rate, not all applications call for the all of the factors at the same time. Since smart city is a pool of drastically unrelated services, this variable demand can actually be advantageous to optimize the network performance. This thesis work is an attempt to achieve one of those QoS demands, namely packet delivery latency. Three algorithms are developed to alleviate traffic load imbalance at APs so as to reduce packet forwarding delay. Software-Defined Networking (SDN) is making its way in the network world to be of great use and practicality. The algorithms make use of SDN features to control the connections to APs in order to achieve the delay requirements of smart city services. Real hardware devices are used to imitate a real-life scenario of citywide coverage consisting of WiFi devices and APs that are currently available in the market with neither of those having any additional requirements such as support for specific roaming protocol, running a software agent or sending probe packets. Extensive hardware experimentation proves the efficacy of the proposed algorithms
    • …
    corecore