2,722 research outputs found

    Energy-Aware Multiflight Planning for an Unattended Seaplane: Flying Fish

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/143017/4/1.i010484.pd

    Autonomous Flight, Fault, and Energy Management of the Flying Fish Solar-Powered Seaplane.

    Full text link
    The Flying Fish autonomous unmanned seaplane is designed and built for persistent ocean surveillance. Solar energy harvesting and always-on autonomous control and guidance are required to achieve unattended long-term operation. This thesis describes the Flying Fish avionics and software systems that enable the system to plan, self-initiate, and autonomously execute drift-flight cycles necessary to maintain a designated watch circle subject to environmentally influenced drift. We first present the avionics and flight software architecture developed for the unique challenges of an autonomous energy-harvesting seaplane requiring the system to be: waterproof, robust over a variety of sea states, and lightweight for flight. Seaplane kinematics and dynamics are developed based on conventional aircraft and watercraft and upon empirical flight test data. These models serve as the basis for development of flight control and guidance strategies which take the form of a cyclic multi-mode guidance protocol that smoothly transitions between nested gain-scheduled proportional-derivative feedback control laws tuned for the trim conditions of each flight mode. A fault-tolerant airspeed sensing system is developed in response to elevated failure rates arising from pitot probe water ingestion in the test environment. The fault-tolerance strategy utilizes sensor characteristics and signal energy to combine redundant sensor measurements in a weighted voting strategy, handling repeated failures, sensor recovery, non-homogenous sensors, and periods of complete sensing failure. Finally, a graph-based mission planner combines models of global solar energy, local ocean-currents, and wind with flight-verified/derived aircraft models to provide an energy-aware flight planning tool. An NP-hard asymmetric multi-visit traveling salesman planning problem is posed that integrates vehicle performance and environment models using energy as the primary cost metric. A novel A* search heuristic is presented to improve search efficiency relative to uniform cost search. A series of cases studies are conducted with surface and airborne goals for various times of day and for multi-day scenarios. Energy-optimal solutions are identified except in cases where energy harvesting produces multiple comparable-cost plans via negative-cost cycles. The always-on cyclic guidance/control system, airspeed sensor fault management algorithm, and the nested-TSP heuristic for A* are all critical innovation required to solve the posed research challenges.Ph.D.Aerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91453/1/eubankrd_1.pd

    U.S. Unmanned Aerial Vehicles (UAVS) and Network Centric Warfare (NCW) impacts on combat aviation tactics from Gulf War I through 2007 Iraq

    Get PDF
    Unmanned, aerial vehicles (UAVs) are an increasingly important element of many modern militaries. Their success on battlefields in Afghanistan, Iraq, and around the globe has driven demand for a variety of types of unmanned vehicles. Their proven value consists in low risk and low cost, and their capabilities include persistent surveillance, tactical and combat reconnaissance, resilience, and dynamic re-tasking. This research evaluates past, current, and possible future operating environments for several UAV platforms to survey the changing dynamics of combat-aviation tactics and make recommendations regarding UAV employment scenarios to the Turkish military. While UAVs have already established their importance in military operations, ongoing evaluations of UAV operating environments, capabilities, technologies, concepts, and organizational issues inform the development of future systems. To what extent will UAV capabilities increasingly define tomorrow's missions, requirements, and results in surveillance and combat tactics? Integrating UAVs and concepts of operations (CONOPS) on future battlefields is an emergent science. Managing a transition from manned- to unmanned and remotely piloted aviation platforms involves new technological complexity and new aviation personnel roles, especially for combat pilots. Managing a UAV military transformation involves cultural change, which can be measured in decades.http://archive.org/details/usunmannedaerial109454211Turkish Air Force authors.Approved for public release; distribution is unlimited

    The University Defence Research Collaboration In Signal Processing

    Get PDF
    This chapter describes the development of algorithms for automatic detection of anomalies from multi-dimensional, undersampled and incomplete datasets. The challenge in this work is to identify and classify behaviours as normal or abnormal, safe or threatening, from an irregular and often heterogeneous sensor network. Many defence and civilian applications can be modelled as complex networks of interconnected nodes with unknown or uncertain spatio-temporal relations. The behavior of such heterogeneous networks can exhibit dynamic properties, reflecting evolution in both network structure (new nodes appearing and existing nodes disappearing), as well as inter-node relations. The UDRC work has addressed not only the detection of anomalies, but also the identification of their nature and their statistical characteristics. Normal patterns and changes in behavior have been incorporated to provide an acceptable balance between true positive rate, false positive rate, performance and computational cost. Data quality measures have been used to ensure the models of normality are not corrupted by unreliable and ambiguous data. The context for the activity of each node in complex networks offers an even more efficient anomaly detection mechanism. This has allowed the development of efficient approaches which not only detect anomalies but which also go on to classify their behaviour

    Routing UAVs to Co-Optimize Mission Effectiveness and Network Performance with Dynamic Programming

    Get PDF
    In support of the Air Force Research Laboratory\u27s (AFRL) vision of the layered sensing operations center, command and control intelligence surveillance and reconnaissance (C2ISR) more focus must be placed on architectures that support information systems, rather than just the information systems themselves. By extending the role of UAVs beyond simply intelligence, surveillance, and reconnaissance (ISR) operations and into a dual-role with networking operations we can better utilize our information assets. To achieve the goal of dual-role UAVs, a concrete approach to planning must be taken. This research defines a mathematical model and a non-trivial deterministic algorithmic approach to determining UAV placement to support ad-hoc network capability, while maintaining the valuable service of surveillance activities

    Thermal infrared video stabilization for aerial monitoring of active wildfires

    Get PDF
    Measuring wildland fire behavior is essential for fire science and fire management. Aerial thermal infrared (TIR) imaging provides outstanding opportunities to acquire such information remotely. Variables such as fire rate of spread (ROS), fire radiative power (FRP), and fireline intensity may be measured explicitly both in time and space, providing the necessary data to study the response of fire behavior to weather, vegetation, topography, and firefighting efforts. However, raw TIR imagery acquired by unmanned aerial vehicles (UAVs) requires stabilization and georeferencing before any other processing can be performed. Aerial video usually suffers from instabilities produced by sensor movement. This problem is especially acute near an active wildfire due to fire-generated turbulence. Furthermore, the nature of fire TIR video presents some specific challenges that hinder robust interframe registration. Therefore, this article presents a software-based video stabilization algorithm specifically designed for TIR imagery of forest fires. After a comparative analysis of existing image registration algorithms, the KAZE feature-matching method was selected and accompanied by pre- and postprocessing modules. These included foreground histogram equalization and a multireference framework designed to increase the algorithm's robustness in the presence of missing or faulty frames. The performance of the proposed algorithm was validated in a total of nine video sequences acquired during field fire experiments. The proposed algorithm yielded a registration accuracy between 10 and 1000x higher than other tested methods, returned 10x more meaningful feature matches, and proved robust in the presence of faulty video frames. The ability to automatically cancel camera movement for every frame in a video sequence solves a key limitation in data processing pipelines and opens the door to a number of systematic fire behavior experimental analyses. Moreover, a completely automated process supports the development of decision support tools that can operate in real time during an emergency

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently ā€“ to become ā€˜smartā€™ and ā€˜sustainableā€™. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ā€˜bigā€™ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently ā€“ to become ā€˜smartā€™ and ā€˜sustainableā€™. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ā€˜bigā€™ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0

    Get PDF
    This Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0 (ā€œroadmapā€) represents the culmination of the UASSCā€™s work to identify existing standards and standards in development, assess gaps, and make recommendations for priority areas where there is a perceived need for additional standardization and/or pre-standardization R&D. The roadmap has examined 64 issue areas, identified a total of 60 gaps and corresponding recommendations across the topical areas of airworthiness; flight operations (both general concerns and application-specific ones including critical infrastructure inspections, commercial services, and public safety operations); and personnel training, qualifications, and certification. Of that total, 40 gaps/recommendations have been identified as high priority, 17 as medium priority, and 3 as low priority. A ā€œgapā€ means no published standard or specification exists that covers the particular issue in question. In 36 cases, additional R&D is needed. The hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards for UAS. To that end, it is envisioned that the roadmap will be widely promoted and discussed over the course of the coming year, to assess progress on its implementation and to identify emerging issues that require further elaboration
    • ā€¦
    corecore