4,796 research outputs found

    COLAB:A Collaborative Multi-factor Scheduler for Asymmetric Multicore Processors

    Get PDF
    Funding: Partially funded by the UK EPSRC grants Discovery: Pattern Discovery and Program Shaping for Many-core Systems (EP/P020631/1) and ABC: Adaptive Brokerage for Cloud (EP/R010528/1); Royal Academy of Engineering under the Research Fellowship scheme.Increasingly prevalent asymmetric multicore processors (AMP) are necessary for delivering performance in the era of limited power budget and dark silicon. However, the software fails to use them efficiently. OS schedulers, in particular, handle asymmetry only under restricted scenarios. We have efficient symmetric schedulers, efficient asymmetric schedulers for single-threaded workloads, and efficient asymmetric schedulers for single program workloads. What we do not have is a scheduler that can handle all runtime factors affecting AMP for multi-threaded multi-programmed workloads. This paper introduces the first general purpose asymmetry-aware scheduler for multi-threaded multi-programmed workloads. It estimates the performance of each thread on each type of core and identifies communication patterns and bottleneck threads. The scheduler then makes coordinated core assignment and thread selection decisions that still provide each application its fair share of the processor's time. We evaluate our approach using the GEM5 simulator on four distinct big.LITTLE configurations and 26 mixed workloads composed of PARSEC and SPLASH2 benchmarks. Compared to the state-of-the art Linux CFS and AMP-aware schedulers, we demonstrate performance gains of up to 25% and 5% to 15% on average depending on the hardware setup.Postprin

    Co-Scheduling Algorithms for High-Throughput Workload Execution

    Get PDF
    This paper investigates co-scheduling algorithms for processing a set of parallel applications. Instead of executing each application one by one, using a maximum degree of parallelism for each of them, we aim at scheduling several applications concurrently. We partition the original application set into a series of packs, which are executed one by one. A pack comprises several applications, each of them with an assigned number of processors, with the constraint that the total number of processors assigned within a pack does not exceed the maximum number of available processors. The objective is to determine a partition into packs, and an assignment of processors to applications, that minimize the sum of the execution times of the packs. We thoroughly study the complexity of this optimization problem, and propose several heuristics that exhibit very good performance on a variety of workloads, whose application execution times model profiles of parallel scientific codes. We show that co-scheduling leads to to faster workload completion time and to faster response times on average (hence increasing system throughput and saving energy), for significant benefits over traditional scheduling from both the user and system perspectives

    pTNoC: Probabilistically time-analyzable tree-based NoC for mixed-criticality systems

    Get PDF
    The use of networks-on-chip (NoC) in real-time safety-critical multicore systems challenges deriving tight worst-case execution time (WCET) estimates. This is due to the complexities in tightly upper-bounding the contention in the access to the NoC among running tasks. Probabilistic Timing Analysis (PTA) is a powerful approach to derive WCET estimates on relatively complex processors. However, so far it has only been tested on small multicores comprising an on-chip bus as communication means, which intrinsically does not scale to high core counts. In this paper we propose pTNoC, a new tree-based NoC design compatible with PTA requirements and delivering scalability towards medium/large core counts. pTNoC provides tight WCET estimates by means of asymmetric bandwidth guarantees for mixed-criticality systems with negligible impact on average performance. Finally, our implementation results show the reduced area and power costs of the pTNoC.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project (www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant Doctorado “la Caixa” - Severo Ochoa. Carles Hern´andez is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Exploring performance and power properties of modern multicore chips via simple machine models

    Full text link
    Modern multicore chips show complex behavior with respect to performance and power. Starting with the Intel Sandy Bridge processor, it has become possible to directly measure the power dissipation of a CPU chip and correlate this data with the performance properties of the running code. Going beyond a simple bottleneck analysis, we employ the recently published Execution-Cache-Memory (ECM) model to describe the single- and multi-core performance of streaming kernels. The model refines the well-known roofline model, since it can predict the scaling and the saturation behavior of bandwidth-limited loop kernels on a multicore chip. The saturation point is especially relevant for considerations of energy consumption. From power dissipation measurements of benchmark programs with vastly different requirements to the hardware, we derive a simple, phenomenological power model for the Sandy Bridge processor. Together with the ECM model, we are able to explain many peculiarities in the performance and power behavior of multicore processors, and derive guidelines for energy-efficient execution of parallel programs. Finally, we show that the ECM and power models can be successfully used to describe the scaling and power behavior of a lattice-Boltzmann flow solver code.Comment: 23 pages, 10 figures. Typos corrected, DOI adde
    • …
    corecore