1,182 research outputs found

    Proportional fairness in wireless powered CSMA/CA based IoT networks

    Get PDF
    This paper considers the deployment of a hybrid wireless data/power access point in an 802.11-based wireless powered IoT network. The proportionally fair allocation of throughputs across IoT nodes is considered under the constraints of energy neutrality and CPU capability for each device. The joint optimization of wireless powering and data communication resources takes the CSMA/CA random channel access features, e.g. the backoff procedure, collisions, protocol overhead into account. Numerical results show that the optimized solution can effectively balance individual throughput across nodes, and meanwhile proportionally maximize the overall sum throughput under energy constraints.Comment: Accepted by Globecom 201

    Joint Uplink and Downlink Coverage Analysis of Cellular-based RF-powered IoT Network

    Get PDF
    Ambient radio frequency (RF) energy harvesting has emerged as a promising solution for powering small devices and sensors in massive Internet of Things (IoT) ecosystem due to its ubiquity and cost efficiency. In this paper, we study joint uplink and downlink coverage of cellular-based ambient RF energy harvesting IoT where the cellular network is assumed to be the only source of RF energy. We consider a time division-based approach for power and information transmission where each time-slot is partitioned into three sub-slots: (i) charging sub-slot during which the cellular base stations (BSs) act as RF chargers for the IoT devices, which then use the energy harvested in this sub-slot for information transmission and/or reception during the remaining two sub-slots, (ii) downlink sub-slot during which the IoT device receives information from the associated BS, and (iii) uplink sub-slot during which the IoT device transmits information to the associated BS. For this setup, we characterize the joint coverage probability, which is the joint probability of the events that the typical device harvests sufficient energy in the given time slot and is under both uplink and downlink signal-to-interference-plus-noise ratio (SINR) coverage with respect to its associated BS. This metric significantly generalizes the prior art on energy harvesting communications, which usually focused on downlink or uplink coverage separately. The key technical challenge is in handling the correlation between the amount of energy harvested in the charging sub-slot and the information signal quality (SINR) in the downlink and uplink sub-slots. Dominant BS-based approach is developed to derive tight approximation for this joint coverage probability. Several system design insights including comparison with regularly powered IoT network and throughput-optimal slot partitioning are also provided

    Energy Management in RFID-Sensor Networks: Taxonomy and Challenges

    Get PDF
    Ubiquitous Computing is foreseen to play an important role for data production and network connectivity in the coming decades. The Internet of Things (IoT) research which has the capability to encapsulate identification potential and sensing capabilities, strives towards the objective of developing seamless, interoperable and securely integrated systems which can be achieved by connecting the Internet with computing devices. This gives way for the evolution of wireless energy harvesting and power transmission using computing devices. Radio Frequency (RF) based Energy Management (EM) has become the backbone for providing energy to wireless integrated systems. The two main techniques for EM in RFID Sensor Networks (RSN) are Energy Harvesting (EH) and Energy Transfer (ET). These techniques enable the dynamic energy level maintenance and optimisation as well as ensuring reliable communication which adheres to the goal of increased network performance and lifetime. In this paper, we present an overview of RSN, its types of integration and relative applications. We then provide the state-of-the-art EM techniques and strategies for RSN from August 2009 till date, thereby reviewing the existing EH and ET mechanisms designed for RSN. The taxonomy on various challenges for EM in RSN has also been articulated for open research directives

    IEEE Access Special Section Editorial: Wirelessly Powered Networks, and Technologies

    Get PDF
    Wireless Power Transfer (WPT) is, by definition, a process that occurs in any system where electrical energy is transmitted from a power source to a load without the connection of electrical conductors. WPT is the driving technology that will enable the next stage in the current consumer electronics revolution, including battery-less sensors, passive RF identification (RFID), passive wireless sensors, the Internet of Things and 5G, and machine-to-machine solutions. WPT-enabled devices can be powered by harvesting energy from the surroundings, including electromagnetic (EM) energy, leading to a new communication networks paradigm, the Wirelessly Powered Networks
    • …
    corecore