108 research outputs found

    A Survey on Mobile Charging Techniques in Wireless Rechargeable Sensor Networks

    Get PDF
    The recent breakthrough in wireless power transfer (WPT) technology has empowered wireless rechargeable sensor networks (WRSNs) by facilitating stable and continuous energy supply to sensors through mobile chargers (MCs). A plethora of studies have been carried out over the last decade in this regard. However, no comprehensive survey exists to compile the state-of-the-art literature and provide insight into future research directions. To fill this gap, we put forward a detailed survey on mobile charging techniques (MCTs) in WRSNs. In particular, we first describe the network model, various WPT techniques with empirical models, system design issues and performance metrics concerning the MCTs. Next, we introduce an exhaustive taxonomy of the MCTs based on various design attributes and then review the literature by categorizing it into periodic and on-demand charging techniques. In addition, we compare the state-of-the-art MCTs in terms of objectives, constraints, solution approaches, charging options, design issues, performance metrics, evaluation methods, and limitations. Finally, we highlight some potential directions for future research

    Improving sensor network performance with wireless energy transfer

    Get PDF
    Through recent technology advances in the field of wireless energy transmission Wireless Rechargeable Sensor Networks have emerged. In this new paradigm for wireless sensor networks a mobile entity called mobile charger (MC) traverses the network and replenishes the dissipated energy of sensors. In this work we first provide a formal definition of the charging dispatch decision problem and prove its computational hardness. We then investigate how to optimise the trade-offs of several critical aspects of the charging process such as: a) the trajectory of the charger; b) the different charging policies; c) the impact of the ratio of the energy the Mobile Charger may deliver to the sensors over the total available energy in the network. In the light of these optimisations, we then study the impact of the charging process to the network lifetime for three characteristic underlying routing protocols; a Greedy protocol, a clustering protocol and an energy balancing protocol. Finally, we propose a mobile charging protocol that locally adapts the circular trajectory of the MC to the energy dissipation rate of each sub-region of the network. We compare this protocol against several MC trajectories for all three routing families by a detailed experimental evaluation. The derived findings demonstrate significant performance gains, both with respect to the no charger case as well as the different charging alternatives; in particular, the performance improvements include the network lifetime, as well as connectivity, coverage and energy balance properties

    A Hybrid Metaheuristic Algorithm for Stop Point Selection in Wireless Rechargeable Sensor Network

    Get PDF
    A wireless rechargeable sensor network (WRSN) enables charging of rechargeable sensor nodes (RSN) wirelessly through a mobile charging vehicle (MCV). Most existing works choose the MCV’s stop point (SP) at random, the cluster’s center, or the cluster head position, all without exploring the demand from RSNs. It results in a long charging delay, a low charging throughput, frequent MCV trips, and more dead nodes. To overcome these issues, this paper proposes a hybrid metaheuristic algorithm for stop point selection (HMA-SPS) that combines the techniques of the dragonfly algorithm (DA), firefly algorithm (FA), and gray wolf optimization (GWO) algorithms. Using FA and GWO techniques, DA predicts an ideal SP using the run-time metrics of RSNs, such as energy, delay, distance, and trust factors. The simulated results demonstrate faster convergence with low delay and highlight that more RSNs can be recharged with fewer MCV visits, further enhancing energy utilization, throughput, network lifetime, and trust factor

    Mitigating the Event and Effect of Energy Holes in Multi-hop Wireless Sensor Networks Using an Ultra-Low Power Wake-up Receiver and an Energy Scheduling Technique

    Get PDF
    This research work presents an algorithm for extending network lifetime in multi-hop wireless sensor networks (WSN). WSNs face energy gap issues around sink nodes due to the transmission of large amounts of data through nearby sensor nodes. The limited power supply to the nodes limits the lifetime of the network, which makes energy efficiency crucial. Multi-hop communication has been proposed as an efficient strategy, but its power consumption remains a research challenge. In this study, an algorithm is developed to mitigate energy holes around the sink nodes by using a modified ultra-low-power wake-up receiver and an energy scheduling technique. Efficient power scheduling reduces the power consumption of the relay node, and when the residual power of the sensor node falls below a defined threshold, the power emitters charge the nodes to eliminate energy-hole problems. The modified wake-up receiver improves sensor sensitivity while staying within the micro-power budget. This study's simulations showed that the developed RF energy harvesting algorithm outperformed previous work, achieving a 30% improvement in average charged energy (AEC), a 0.41% improvement in average energy (AEH), an 8.39% improvement in the number of energy transmitters, an 8.59% improvement in throughput, and a 0.19 decrease in outage probability compared to the existing network lifetime enhancement of multi-hop wireless sensor networks by RF Energy Harvesting algorithm. Overall, the enhanced power efficiency technique significantly improves the performance of WSNs

    Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    Full text link
    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need to transmit their packets. In this paper, we investigate a novel optimal scheduling strategy, called EHMDP, aiming to minimize data packet loss from a network of sensor nodes in terms of the nodes' energy consumption and data queue state information. The scheduling problem is first formulated by a centralized MDP model, assuming that the complete states of each node are well known by the base station. This presents the upper bound of the data that can be collected in a rechargeable wireless sensor network. Next, we relax the assumption of the availability of full state information so that the data transmission and WPT can be semi-decentralized. The simulation results show that, in terms of network throughput and packet loss rate, the proposed algorithm significantly improves the network performance.Comment: 30 pages, 8 figures, accepted to IEEE Transactions on Vehicular Technolog

    Energy Cooperation in Battery-Free Wireless Communications with Radio Frequency Energy Harvesting

    Get PDF
    Radio frequency (RF) energy harvesting techniques are becoming a potential method to power battery-free wireless networks. In RF energy harvesting communications, energy cooperation enables shaping and optimization of the energy arrivals at the energy-receiving node to improve the overall system performance. In this paper, we proposed an energy cooperation scheme that enables energy cooperation in battery-free wireless networks with RF harvesting. We first study the battery-free wireless network with RF energy harvesting then state the problem that optimizing the system performance with limited harvesting energy through new energy cooperation protocol. Finally, from the extensive simulation results, our energy cooperation protocol performs better than the original battery-free wireless network solution.特

    Quality-Aware Scheduling Algorithms in Renewable Sensor

    No full text
    Wireless sensor network has emerged as a key technology for various applications such as environmental sensing, structural health monitoring, and area surveillance. Energy is by far one of the most critical design hurdles that hinders the deployment of wireless sensor networks. The lifetime of traditional battery-powered sensor networks is limited by the capacities of batteries. Even many energy conservation schemes were proposed to address this constraint, the network lifetime is still inherently restrained, as the consumed energy cannot be replenished easily. Fully addressing this issue requires energy to be replenished quite often in sensor networks (renewable sensor networks). One viable solution to energy shortages is enabling each sensor to harvest renewable energy from its surroundings such as solar energy, wind energy, and so on. In comparison with their conventional counterparts, the network lifetime in renewable sensor networks is no longer a main issue, since sensors can be recharged repeatedly. This results in a research focus shift from the network lifetime maximization in traditional sensor networks to the network performance optimization (e.g., monitoring quality). This thesis focuses on these issues and tackles important problems in renewable sensor networks as follows. We first study the target coverage optimization in renewable sensor networks via sensor duty cycle scheduling, where a renewable sensor network consisting of a set of heterogeneous sensors and a stationary base station need to be scheduled to monitor a set of targets in a monitoring area (e.g., some critical facilities) for a specified period, by transmitting their sensing data to the base station through multihop relays in a real-time manner. We formulate a coverage maximization problem in a renewable sensor network which is to schedule sensor activities such that the monitoring quality is maximized, subject to that the communication network induced by the activated sensors and the base station at each time moment is connected. We approach the problem for a given monitoring period by adopting a general strategy. That is, we divide the entire monitoring period into equal numbers of time slots and perform sensor activation or inactivation scheduling in the beginning of each time slot. As the problem is NP-hard, we devise efficient offline centralized and distributed algorithms for it, provided that the amount of harvested energy of each sensor for a given monitoring period can be predicted accurately. Otherwise, we propose an online adaptive framework to handle energy prediction fluctuation for this monitoring period. We conduct extensive experiments, and the experimental results show that the proposed solutions are very promising. We then investigate the data collection optimization in renewable sensor networks by exploiting sink mobility, where a mobile sink travels around the sensing field to collect data from sensors through one-hop transmission. With one-hop transmission, each sensor could send data directly to the mobile sink without any relay, and thus no energy are consumed on forwarding packets for others which is more energy efficient in comparison with multi-hop relays. Moreover, one-hop transmission particularly is very useful for a disconnected network, which may be due to the error-prone nature of wireless communication or the physical limit (e.g., some sensors are physically isolated), while multi-hop transmission is not applicable. In particular, we investigate two different kinds of mobile sinks, and formulate optimization problems under different scenarios, for which both centralized and distributed solutions are proposed accordingly. We study the performance of the proposed solutions and validate their effectiveness in improving the data quality. Since the energy harvested often varies over time, we also consider the scenario of renewable sensor networks by utilizing wireless energy transfer technology, where a mobile charging vehicle periodically travels inside the sensing field and charges sensors without any plugs or wires. Specifically, we propose a novel charging paradigm and formulate an optimization problem with an objective of maximizing the number of sensors charged per tour. We devise an offline approximation algorithm which runs in quasi-polynomial time and develop efficient online sensor charging algorithms, by considering the dynamic behaviors of sensors’ various sensing and transmission activities. To study the efficiency of the proposed algorithms, we conduct extensive experiments and the experimental results demonstrate that the proposed algorithms are very efficient. We finally conclude our work and discuss potential research topics which derive from the studies of this thesis
    • …
    corecore