671 research outputs found

    A hierarchical detection method in external communication for self-driving vehicles based on TDMA

    Get PDF
    Security is considered a major challenge for self-driving and semi self-driving vehicles. These vehicles depend heavily on communications to predict and sense their external environment used in their motion. They use a type of ad hoc network termed Vehicular ad hoc networks (VANETs). Unfortunately, VANETs are potentially exposed to many attacks on network and application level. This paper, proposes a new intrusion detection system to protect the communication system of self-driving cars; utilising a combination of hierarchical models based on clusters and log parameters. This security system is designed to detect Sybil and Wormhole attacks in highway usage scenarios. It is based on clusters, utilising Time Division Multiple Access (TDMA) to overcome some of the obstacles of VANETs such as high density, high mobility and bandwidth limitations in exchanging messages. This makes the security system more efficient, accurate and capable of real time detection and quick in identification of malicious behaviour in VANETs. In this scheme, each vehicle log calculates and stores different parameter values after receiving the cooperative awareness messages from nearby vehicles. The vehicles exchange their log data and determine the difference between the parameters, which is utilised to detect Sybil attacks and Wormhole attacks. In order to realize efficient and effective intrusion detection system, we use the well-known network simulator (ns-2) to verify the performance of the security system. Simulation results indicate that the security system can achieve high detection rates and effectively detect anomalies with low rate of false alarms

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    WiSHFUL : enabling coordination solutions for managing heterogeneous wireless networks

    Get PDF
    The paradigm shift toward the Internet of Things results in an increasing number of wireless applications being deployed. Since many of these applications contend for the same physical medium (i.e., the unlicensed ISM bands), there is a clear need for beyond-state-of-the-art solutions that coordinate medium access across heterogeneous wireless networks. Such solutions demand fine-grained control of each device and technology, which currently requires a substantial amount of effort given that the control APIs are different on each hardware platform, technology, and operating system. In this article an open architecture is proposed that overcomes this hurdle by providing unified programming interfaces (UPIs) for monitoring and controlling heterogeneous devices and wireless networks. The UPIs enable creation and testing of advanced coordination solutions while minimizing the complexity and implementation overhead. The availability of such interfaces is also crucial for the realization of emerging software-defined networking approaches for heterogeneous wireless networks. To illustrate the use of UPIs, a showcase is presented that simultaneously changes the MAC behavior of multiple wireless technologies in order to mitigate cross-technology interference taking advantage of the enhanced monitoring and control functionality. An open source implementation of the UPIs is available for wireless researchers and developers. It currently supports multiple widely used technologies (IEEE 802.11, IEEE 802.15.4, LTE), operating systems (Linux, Windows, Contiki), and radio platforms (Atheros, Broadcom, CC2520, Xylink Zynq,), as well as advanced reconfigurable radio systems (IRIS, GNURadio, WMP, TAISC)
    corecore