3,010 research outputs found

    A three-switch high-voltage converter

    Get PDF
    A novel single active switch two-diodes high-voltage converter is presented. This converter can operate into a capacitor-diode voltage multiplier, which offers simpler structure and control, higher efficiency, reduced electromagnetic interference (EMI), and size and weight savings compared with traditional switched-mode regulated voltage multipliers. Two significant advantages are the continuous input current and easy isolation extension. The new converter is experimentally verified. Both the steady-state and dynamic theoretical models are correlated well with the experimental dat

    Supercapacitor assisted LDO (SCALDO) techniquean extra low frequency design approach to high efficiency DC-DC converters and how it compares with the classical switched capacitor converters

    Get PDF
    Supercapacitor assisted low dropout regulators (SCALDO) were proposed as an alternative design approach to DC-DC converters, where the supercapacitor circulation frequency (switching frequency) is in the order of few Hz to few 10s of Hz, with an output stage based on a low dropout regulator stage. For converters such as 12–5V, 5–3.3V and 5–1.5V, the technique provides efficiency improvement factors of 2, 1.33 and 3 respectively, in compared to linear converters with same input-output combinations. In a 5–1.5V SCALDO regulator, using thin profile supercapacitors in the range of fractional farads to few farads, this translates to an approximate end to end efficiency of near 90%. However, there were concerns that this patented technique is merely a variation of well-known switched capacitor (charge pump) converters. This paper is aimed at providing a broad overview of the capability of SCALDO technique with generalized theory, indicating its capabilities and limitations, and comparing the practical performance with a typical switched capacitor converter of similar current capability

    Evaluation and implementation of a 5-level hybrid DC-DC converter

    Get PDF
    In this work, a hybrid voltage regulator topology is analyzed, implemented, and evaluated. The common topologies of DC-DC converters have proven to be lacking in some aspects, such as integrability for buck converters, or maximum efficiency for switched-capacitor regulators. The hybrid topology tackles these shortcomings by combining the advantages of switched-capacitor and inductor-based voltage regulators. A 5-level buck converter is evaluated, implemented, and compared to other converter implementations using the same components. The 5-Level Buck converter can achieve 5 different levels, allowing it to cover 4 operation regions, each between 2 levels. Accordingly, it covers a wide range of output voltages. By reducing the voltage difference at the inductor input, the 5-level buck converter can use smaller inductor compared to both 3-level and conventional buck converters which makes it cheaper, smaller in size, and much more efficient. Simulations show proper functionality of the 5-Level topology, while putting restrictions on the inductor size, efficiency, and component footprint (or total converter area). A test PCB is implemented for verification of the functionality and experimental measurements show that for the same switching frequency and inductor size, the 5-level buck converter achieves up to 15% efficiency improvement over a conventional buck converter and a 3-level buck converter at certain output voltage ranges. Peak efficiency of 94% has been achieved by the 5-Level hybrid converter, which includes all external switching and conduction losses. The proposed hybrid topology proved to yield high conversion efficiency even in the face of component size limitations, which indicates potential benefit in using multilevel converters for several off-chip as well as on-chip applications

    Design of Power Switched-Capacitor Converters and Their Performance Analysis in a Soft-Charging Operation

    Get PDF
    Switched-capacitor (SC) converters have gained more interest due to their high power density and appropriateness for small circuit integration. Building a SC DC-to-DC converter with only capacitors and switches is the main reason to seek a higher power density achievement. However, the SC converters suffer dominant losses related to their capacitors and switches. These losses can be determined and optimized by calculating the converter\u27s output impedance in its two asymptotic limits. We proposed a high voltage gain and a very low output impedance power switched-capacitor converter (PSC) with a lower number of components compared to other step-up switched-capacitor topologies. The high output efficiency and the higher power density are two fundamental aspects of the PSC converter. We can eliminate the current transient by applying the soft-charging technique that results a higher power density and a higher efficiency in PSC. The soft-charging operation is more preferable to the soft-switching technique (resonant operation) since it does not require any auxiliary components. Furthermore, soft-charging helps to resize capacitors and reduce the switching frequency of the PSC converter. Furthermore, a split-phase control design is proposed to achieve the complete soft-charging operation in a PSC. The control diagram was designed for a 1-to-4 PSC (two levels of the PSC) which controls eight switches to exhibit eight modes of operation. The complete soft-charging accomplishes a 96% efficiency due to the lower output impedance and the dead time switching. LT-spice software has been used to verify the proposed control, and the results were compared with hard-charging and incomplete soft-charging operations. In this research, we also proposed a two-level power switched-capacitor boost converter (PSC-boost) for a high voltage gain application by integrating a PSC converter and a conventional boost converter. The PSC switched-capacitors and the conventional boost converter are respectively cascaded as a primary and a secondary side of the proposed converter. Without alerting of the secondary side (conventional boost), the conversion ratio can be increased by adding more switched-capacitors cells. The proposed converter similarly acts as an MBC; however, it can maintain the rated voltage gain at a higher duty cycle. Unlike the MBC converter, the simulated voltage gain is closer to the calculated voltage gain for PSC-boost converter. In addition to the switched-capacitors insertion, a switched inductor model is used instead of the single inductor in the traditional boost converter. Five switches, five capacitors, seven diodes, and three inductors are used to build a PSC-boost switched-inductor converter. The PSC-boost converter accomplishes 94% efficiency which a higher rated power

    Multilevel multistate hybrid voltage regulator

    Get PDF
    In this work, a new set of voltage regulators as well as some controlling methods and schemes are proposed. While normal switched capacitor voltage regulators are easy integrable, they are suffering from charge sharing losses as well as fast degradation of efficiency when deviating from target operation point. On the other hand, conventional buck converters use bulky magnetic components that introduce challenges to integrate them on chip. The new set of voltage regulators covers the gap between inductor-based and capacitor-based voltage regulators by taking the advantages of both of them while avoiding or minimizing their disadvantages. The voltage regulator device consists of a switched capacitor circuit that is periodically switching its output between different voltage levels followed by a low pass filter to give a regulated output voltage. The voltage regulator is capable of converting an input voltage to a wide range of output voltage with a high efficiency that is roughly constant over the whole operation range. By switching between adjacent voltage levels, the voltage drop on the inductor is limited allowing for the use of smaller inductor sizes while maintaining the same performance. The general concept of the proposed voltage regulator as well as some operating conditions and techniques are explained. A phase interleaving technique to operate the multilevel multistate voltage regulator has been proposed. In this technique, the phases of two or more voltage levels are interleaved which enhances the effective switching frequency of the charge transferring components. This results in a further boost in the proposed regulator\u27s performance. A 4-level 4-state hybrid voltage regulator has been introduced as an application on the proposed concepts and techniques. It shows better performance compared to both integrated inductor-based and capacitor-based voltage regulators. The results prove that the proposed set of voltage regulators offers a potential move towards easing the integration of voltage regulators on chip with a performance that approaches that of off-chip voltage regulators

    Analysis and Design of a Hybrid Dickson Switched Capacitor Converter for Intermediate Bus Converter Applications

    Get PDF
    By 2020 it is predicted that 1/3 of all data will pass through the cloud. With society\u27s growing dependency on data, it is vital that data centers, the cloud\u27s physical house of content, operate with optimal energy performance to reduce operating costs.Unfortunately, today\u27s data centers are inefficient, both economically and environmentally. This has led to an increase in demand for energy-efficient servers. One opportunity for improved efficiency is in the power delivery architecture which delivers power from the grid to the motherboard. In this dissertation, the main focus is the intermediate bus converter (IBC), used for the intermediate conversion, typically 48-12V/5V, in server power supplies. The IBC requires compact design so that it can be placed as close to the load as possible to enable more space for computing power and high efficiency to reduce the need for external cooling. Most commonly used converter topologies today include expensive bulky magnetics hindering the converter\u27s power density. Furthermore, high output current of an IBC makes the efficiency very sensitive to any resistance, such as magnetic parasitic resistance or PCB trace resistance. In this work, analytical loss models are used to review the advantages and disadvantages of frequently used IBC topologies such as the phase-shifted full bridge and LLC. The Hybrid Dickson Switched Capacitor (HDSC) topology is also analyzed. The HDSC\u27s high step-down conversion ratio and low dependence on magnetics due to the reduced applied volt-seconds, provides a new opportunity for applications such as the intermediate bus converter. The HDSC designs the on-time of devices in order to achieve soft-charging between flying capacitors. Other advantages of the HDSC include low switch stress, small magnetics and adjustable duty cycle for voltage regulation. Challenges, such as minimizing parasitic inductance and resistance between flying capacitors, are addressed and recommendations for PCB layout are provided. In this paper, a 4:1 24-5V and 8:1 48-5V, 100W GaN-based HDSC is designed and tested. The influences of capacitor mismatch and limitations placed on soft-charging operation for the HDSC is also modeled. This analysis can be used as a tool for designers when selecting flying capacitors

    High step up DC-DC converter topology for PV systems and electric vehicles

    Get PDF
    This thesis presents new high step-up DC-DC converters for photovoltaic and electric vehicle applications. An asymmetric flyback-forward DC-DC converter is proposed for the PV system controlled by the MPPT algorithm. The second converter is a modular switched-capacitor DC-DC converter, it has the capability to operate with transistor and capacitor open-circuit faults in every module. The results from simulations and tests of the asymmetric DC-DC converters have suggested that the proposed converter has a 5% to 10% voltage gain ratio increased to the symmetric structures among 100W – 300W power (such as [3]) range while maintaining efficiency of 89%-93% when input voltage is in the range of 25 – 30 V. they also indicated that the softswitching technique has been achieved, which significantly reduce the power loss by 1.7%, which exceeds the same topology of the proposed converter without the softswitching technique. Moreover, the converters can maintain rated outputs under main transistor open circuit fault situation or capacitor open circuit faults. The simulation and test results of the proposed modularized switched-capacitor DC-DC converters indicate that the proposed converter has the potential of extension, it can be embedded with infinite module in simulation results, however, during experiment. The sign open circuit fault to the transistors and capacitors would have low impact to the proposed converters, only the current ripple on the input source would increase around 25% for 4-module switched-capacitor DC-DC converters. The developed converters can be applied to many applications where DC-DC voltage conversion is alighted. In addition to PVs and EVs. Since they can ride through some electrical faults in the devices, the developed converter will have economic implications to improve the system efficiency and reliability

    Forward converter current fed equalizer for lithium based batteries in ultralight electrical vehicles

    Get PDF
    In this paper, the concept of a forward balancing technique fed by a buck converter for lithium-based batteries in Electrical Vehicle (EV) applications is investigated. The proposed active topology equalizes eight cells in a series in a battery pack, by using a forward converter for each battery pack and the whole battery packs, using a buck converter. The battery bank consists of four battery packs, which are in series. Therefore, the proposed system will equalize 32 cells in series. In this paper, the proposed circuit employs a single transistor used in a Zero Voltage Switch (ZVS) for the forward converter. In practice, this means a capacitor in parallel with the switch at the same time a demagnetizing of the transformer is obtained. The circuit realizes a low Electromagnetic Interference (EMI) and reduces ringing. To overcome the problem of many pins on a coil former, the transformer secondary windings are made by using hairpin winding, on a ring core. It permits, e.g., having eight secondaries and uniform output voltages. Each secondary winding is made by two hairpin turns using two zero-Ohm resistors in series. The proposed topology has less components and circuitry, and it can equalize multiple battery packs by using a single buck converter and several forward converters for each battery pack. Experimental and simulation results are performed to verify the viability of the proposed topology

    A Bidirectional Soft-Switched DAB-Based Single-Stage Three-Phase AC–DC Converter for V2G Application

    Get PDF
    In vehicle-to-grid applications, the battery charger of the electric vehicle (EV) needs to have a bidirectional power flow capability. Galvanic isolation is necessary for safety. An ac-dc bidirectional power converter with high-frequency isolation results in high power density, a key requirement for an on-board charger of an EV. Dual-active-bridge (DAB) converters are preferred in medium power and high voltage isolated dc-dc converters due to high power density and better efficiency. This paper presents a DAB-based three-phase ac-dc isolated converter with a novel modulation strategy that results in: 1) single-stage power conversion with no electrolytic capacitor, improving the reliability and power density; 2) open-loop power factor correction; 3) soft-switching of all semiconductor devices; and 4) a simple linear relationship between the control variable and the transferred active power. This paper presents a detailed analysis of the proposed operation, along with simulation results and experimental verification
    corecore