460 research outputs found

    Recognition of Characters from Streaming Videos

    Get PDF
    Non

    Automatic Vehicle Detection and Identification using Visual Features

    Get PDF
    In recent decades, a vehicle has become the most popular transportation mechanism in the world. High accuracy and success rate are key factors in automatic vehicle detection and identification. As the most important label on vehicles, the license plate serves as a mean of public identification for them. However, it can be stolen and affixed to different vehicles by criminals to conceal their identities. Furthermore, in some cases, the plate numbers can be the same for two vehicles coming from different countries. In this thesis, we propose a new vehicle identification system that provides high degree of accuracy and success rates. The proposed system consists of four stages: license plate detection, license plate recognition, license plate province detection and vehicle shape detection. In the proposed system, the features are converted into local binary pattern (LBP) and histogram of oriented gradients (HOG) as training dataset. To reach high accuracy in real-time application, a novel method is used to update the system. Meanwhile, via the proposed system, we can store the vehicles features and information in the database. Additionally, with the database, the procedure can automatically detect any discrepancy between license plate and vehicles

    Parking lot monitoring system using an autonomous quadrotor UAV

    Get PDF
    The main goal of this thesis is to develop a drone-based parking lot monitoring system using low-cost hardware and open-source software. Similar to wall-mounted surveillance cameras, a drone-based system can monitor parking lots without affecting the flow of traffic while also offering the mobility of patrol vehicles. The Parrot AR Drone 2.0 is the quadrotor drone used in this work due to its modularity and cost efficiency. Video and navigation data (including GPS) are communicated to a host computer using a Wi-Fi connection. The host computer analyzes navigation data using a custom flight control loop to determine control commands to be sent to the drone. A new license plate recognition pipeline is used to identify license plates of vehicles from video received from the drone

    Application of Image Processing and Three-Dimensional Data Reconstruction Algorithm Based on Traffic Video in Vehicle Component Detection

    Get PDF
    Vehicle detection is one of the important technologies in intelligent video surveillance systems. Owing to the perspective projection imaging principle of cameras, traditional two-dimensional (2D) images usually distort the size and shape of vehicles. In order to solve these problems, the traffic scene calibration and inverse projection construction methods are used to project the three-dimensional (3D) information onto the 2D images. In addition, a vehicle target can be characterized by several components, and thus vehicle detection can be fulfilled based on the combination of these components. The key characteristics of vehicle targets are distinct during a single day; for example, the headlight brightness is more significant at night, while the vehicle taillight and license plate color are much more prominent in the daytime. In this paper, by using the background subtraction method and Gaussian mixture model, we can realize the accurate detection of target lights at night. In the daytime, however, the detection of the license plate and taillight of a vehicle can be fulfilled by exploiting the background subtraction method and the Markov random field, based on the spatial geometry relation between the corresponding components. Further, by utilizing Kalman filters to follow the vehicle tracks, detection accuracy can be further improved. Finally, experiment results demonstrate the effectiveness of the proposed methods

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Artificial neural network and its applications in quality process control, document recognition and biomedical imaging

    Get PDF
    In computer-vision based system a digital image obtained by a digital camera would usually have 24-bit color image. The analysis of an image with that many levels might require complicated image processing techniques and higher computational costs. But in real-time application, where a part has to be inspected within a few milliseconds, either we have to reduce the image to a more manageable number of gray levels, usually two levels (binary image), and at the same time retain all necessary features of the original image or develop a complicated technique. A binary image can be obtained by thresholding the original image into two levels. Therefore, thresholding of a given image into binary image is a necessary step for most image analysis and recognition techniques. In this thesis, we have studied the effectiveness of using artificial neural network (ANN) in pharmaceutical, document recognition and biomedical imaging applications for image thresholding and classification purposes. Finally, we have developed edge-based, ANN-based and region-growing based image thresholding techniques to extract low contrast objects of interest and classify them into respective classes in those applications. Real-time quality inspection of gelatin capsules in pharmaceutical applications is an important issue from the point of view of industry\u27s productivity and competitiveness. Computer vision-based automatic quality inspection and controller system is one of the solutions to this problem. Machine vision systems provide quality control and real-time feedback for industrial processes, overcoming physical limitations and subjective judgment of humans. In this thesis, we have developed an image processing system using edge-based image thresholding techniques for quality inspection that satisfy the industrial requirements in pharmaceutical applications to pass the accepted and rejected capsules. In document recognition application, success of OCR mostly depends on the quality of the thresholded image. Non-uniform illumination, low contrast and complex background make it challenging in this application. In this thesis, optimal parameters for ANN-based local thresholding approach for gray scale composite document image with non-uniform background is proposed. An exhaustive search was conducted to select the optimal features and found that pixel value, mean and entropy are the most significant features at window size 3x3 in this application. For other applications, it might be different, but the procedure to find the optimal parameters is same. The average recognition rate 99.25% shows that the proposed 3 features at window size 3x3 are optimal in terms of recognition rate and PSNR compare to the ANN-based thresholding technique with different parameters presented in the literature. In biomedical imaging application, breast cancer continues to be a public health problem. In this thesis we presented a computer aided diagnosis (CAD) system for mass detection and classification in digitized mammograms, which performs mass detection on regions of interest (ROI) followed by the benign-malignant classification on detected masses. Three layers ANN with seven features is proposed for classifying the marked regions into benign and malignant and 90.91% sensitivity and 83.87% specificity is achieved that is very much promising compare to the radiologist\u27s sensitivity 75%

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Computer vision reading on stickers and direct part marking on horticultural products : challenges and possible solutions

    Get PDF
    Traceability of products from production to the consumer has led to a technological advancement in product identification. There has been development from the use of traditional one-dimensional barcodes (EAN-13, Code 128, etc.) to 2D (two-dimensional) barcodes such as QR (Quick Response) and Data Matrix codes. Over the last two decades there has been an increased use of Radio Frequency Identification (RFID) and Direct Part Marking (DPM) using lasers for product identification in agriculture. However, in agriculture there are still considerable challenges to adopting barcodes, RFID and DPM technologies, unlike in industry where these technologies have been very successful. This study was divided into three main objectives. Firstly, determination of the effect of speed, dirt, moisture and bar width on barcode detection was carried out both in the laboratory and a flower producing company, Brandkamp GmbH. This study developed algorithms for automation and detection of Code 128 barcodes under rough production conditions. Secondly, investigations were carried out on the effect of low laser marking energy on barcode size, print growth, colour and contrast on decoding 2D Data Matrix codes printed directly on apples. Three different apple varieties (Golden Delicious, Kanzi and Red Jonaprince) were marked with various levels of energy and different barcode sizes. Image processing using Halcon 11.0.1 (MvTec) was used to evaluate the markings on the apples. Finally, the third objective was to evaluate both algorithms for 1D and 2D barcodes. According to the results, increasing the speed and angle of inclination of the barcode decreased barcode recognition. Also, increasing the dirt on the surface of the barcode resulted in decreasing the successful detection of those barcodes. However, there was 100% detection of the Code 128 barcode at the company’s production speed (0.15 m/s) with the proposed algorithm. Overall, the results from the company showed that the image-based system has a future prospect for automation in horticultural production systems. It overcomes the problem of using laser barcode readers. The results for apples showed that laser energy, barcode size, print growth, type of product, contrast between the markings and the colour of the products, the inertia of the laser system and the days of storage all singularly or in combination with each other influence the readability of laser Data Matrix codes and implementation on apples. There was poor detection of the Data Matrix code on Kanzi and Red Jonaprince due to the poor contrast between the markings on their skins. The proposed algorithm is currently working successfully on Golden Delicious with 100% detection for 10 days using energy 0.108 J mm-2 and a barcode size of 10 × 10 mm2. This shows that there is a future prospect of not only marking barcodes on apples but also on other agricultural products for real time production

    Video content analysis for intelligent forensics

    Get PDF
    The networks of surveillance cameras installed in public places and private territories continuously record video data with the aim of detecting and preventing unlawful activities. This enhances the importance of video content analysis applications, either for real time (i.e. analytic) or post-event (i.e. forensic) analysis. In this thesis, the primary focus is on four key aspects of video content analysis, namely; 1. Moving object detection and recognition, 2. Correction of colours in the video frames and recognition of colours of moving objects, 3. Make and model recognition of vehicles and identification of their type, 4. Detection and recognition of text information in outdoor scenes. To address the first issue, a framework is presented in the first part of the thesis that efficiently detects and recognizes moving objects in videos. The framework targets the problem of object detection in the presence of complex background. The object detection part of the framework relies on background modelling technique and a novel post processing step where the contours of the foreground regions (i.e. moving object) are refined by the classification of edge segments as belonging either to the background or to the foreground region. Further, a novel feature descriptor is devised for the classification of moving objects into humans, vehicles and background. The proposed feature descriptor captures the texture information present in the silhouette of foreground objects. To address the second issue, a framework for the correction and recognition of true colours of objects in videos is presented with novel noise reduction, colour enhancement and colour recognition stages. The colour recognition stage makes use of temporal information to reliably recognize the true colours of moving objects in multiple frames. The proposed framework is specifically designed to perform robustly on videos that have poor quality because of surrounding illumination, camera sensor imperfection and artefacts due to high compression. In the third part of the thesis, a framework for vehicle make and model recognition and type identification is presented. As a part of this work, a novel feature representation technique for distinctive representation of vehicle images has emerged. The feature representation technique uses dense feature description and mid-level feature encoding scheme to capture the texture in the frontal view of the vehicles. The proposed method is insensitive to minor in-plane rotation and skew within the image. The capability of the proposed framework can be enhanced to any number of vehicle classes without re-training. Another important contribution of this work is the publication of a comprehensive up to date dataset of vehicle images to support future research in this domain. The problem of text detection and recognition in images is addressed in the last part of the thesis. A novel technique is proposed that exploits the colour information in the image for the identification of text regions. Apart from detection, the colour information is also used to segment characters from the words. The recognition of identified characters is performed using shape features and supervised learning. Finally, a lexicon based alignment procedure is adopted to finalize the recognition of strings present in word images. Extensive experiments have been conducted on benchmark datasets to analyse the performance of proposed algorithms. The results show that the proposed moving object detection and recognition technique superseded well-know baseline techniques. The proposed framework for the correction and recognition of object colours in video frames achieved all the aforementioned goals. The performance analysis of the vehicle make and model recognition framework on multiple datasets has shown the strength and reliability of the technique when used within various scenarios. Finally, the experimental results for the text detection and recognition framework on benchmark datasets have revealed the potential of the proposed scheme for accurate detection and recognition of text in the wild
    • …
    corecore