12,661 research outputs found

    A Low-Overhead Script Language for Tiny Networked Embedded Systems

    Get PDF
    With sensor networks starting to get mainstream acceptance, programmability is of increasing importance. Customers and field engineers will need to reprogram existing deployments and software developers will need to test and debug software in network testbeds. Script languages, which are a popular mechanism for reprogramming in general-purpose computing, have not been considered for wireless sensor networks because of the perceived overhead of interpreting a script language on tiny sensor nodes. In this paper we show that a structured script language is both feasible and efficient for programming tiny sensor nodes. We present a structured script language, SCript, and develop an interpreter for the language. To reduce program distribution energy the SCript interpreter stores a tokenized representation of the scripts which is distributed through the wireless network. The ROM and RAM footprint of the interpreter is similar to that of existing virtual machines for sensor networks. We show that the interpretation overhead of our language is on par with that of existing virtual machines. Thus script languages, previously considered as too expensive for tiny sensor nodes, are a viable alternative to virtual machines

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Online on-board optimization of cutting parameter for energy efficient CNC milling

    Get PDF
    Energy efficiency is one of the main drivers for achieving sustainable manufacturing. Advances in machine tool design have reduced the energy consumption of such equipment, but still machine tools remain one of the most energy demanding equipment in a workshop. This study presents a novel approach aimed to improve the energy efficiency of machine tools through the online optimization of cutting conditions. The study is based on an industrial CNC controller with smart algorithms optimizing the cutting parameters to reduce the overall machining time while at the same time minimizing the peak energy consumption
    corecore