4,763 research outputs found

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Deep Learning Based Speech Enhancement and Its Application to Speech Recognition

    Get PDF
    Speech enhancement is the task that aims to improve the quality and the intelligibility of a speech signal that is degraded by ambient noise and room reverberation. Speech enhancement algorithms are used extensively in many audio- and communication systems, including mobile handsets, speech recognition, speaker verification systems and hearing aids. Recently, deep learning has achieved great success in many applications, such as computer vision, nature language processing and speech recognition. Speech enhancement methods have been introduced that use deep-learning techniques, as these techniques are capable of learning complex hierarchical functions using large-scale training data. This dissertation investigates the deep learning based speech enhancement and its application to robust Automatic Speech Recognition (ASR). We start our work by exploring generative adversarial network (GAN) based speech enhancement. We explore the techniques to extract information about the noise to aid in the reconstruction of the speech signals. The proposed framework, referred to as ForkGAN, is a novel general adversarial learning-based framework that combines deep-learning with conventional noise reduction techniques. We further extend ForkGAN to M-ForkGAN, which integrates feature mapping and mask learning into a unified framework using ForkGAN. Another variant of ForkGAN, named S-ForkGAN, operates on spectral-domain features, which could directly apply to ASR. Systematic evaluations demonstrate the effectiveness of the proposed approaches. Then, we propose a novel multi-stage learning speech enhancement system. Each stage comprises a self-attention (SA) block followed by stacks of temporal convolutional network (TCN) blocks with doubling dilation factors. Each stage generates a prediction that is refined in a subsequent stage. A fusion block is inserted at the input of later stages to re-inject original information. Moreover, we design several multi-scale architectures with perceptual loss. Experiments show that our proposed architectures can achieve the state of the art performance on several public datasets. Recently, modeling to learn the acoustic noisy-clean speech mapping has been enhanced by including auxiliary information such as visual cues, phonetic and linguistic information, and speaker information. We propose a novel speaker-aware speech enhancement (SASE) method that extracts speaker information from a clean reference using long short-term memory (LSTM) layers, and then uses a convolutional recurrent neural network (CRN) to embed the extracted speaker information. The SASE framework is extended with a self-attention mechanism. It is shown that a few seconds of clean reference speech is sufficient, and that the proposed SASE method performs well for a wide range of scenarios. Even though speech enhancement methods that are based on deep learning have demonstrated state-of-the-art performance when compared with conventional methodologies, current deep learning approaches heavily rely on supervised learning, which requires a large number of noisy- and clean-speech sample pairs for training. This is generally not practical in a realistic environment. One cannot simultaneously obtain both noisy and clean speech samples. Thus, most speech enhancement approaches are trained with simulated speech and clean targets. In addition, it would be hard to collect large-scale dataset for the low-resource languages. We propose a novel noise-to-noise speech enhancement (N2N-SE) method that addresses the parallel noisy-clean training data issue, we leverage signal reconstruction techniques by only using corrupted speech. The proposed N2N-SE framework includes a noise conversion module that is an auto-encoder that learns to mix noise with speech, and a speech enhancement module, that learns to reconstruct corrupted speech signals. In addition to additive noise, speech is also affected by reverberation, which is caused by the attenuated and delayed reflections of sound waves. These distortions, particularly when combined, can severely degrade speech intelligibility for human listeners and impact applications, e.g., automatic speech recognition (ASR) and speaker recognition. Thus, effective speech denoising and dereverberation will benefit both speech processing applications and human listeners. We investigate the deep-learning based approaches for both speech dereverberation and speech denoising using the cascade Conformer architecture. The experimental results show that the proposed cascade Conformer can be effective to suppress the noise and reverberation

    FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors

    Full text link
    Face Super-Resolution (SR) is a domain-specific super-resolution problem. The specific facial prior knowledge could be leveraged for better super-resolving face images. We present a novel deep end-to-end trainable Face Super-Resolution Network (FSRNet), which makes full use of the geometry prior, i.e., facial landmark heatmaps and parsing maps, to super-resolve very low-resolution (LR) face images without well-aligned requirement. Specifically, we first construct a coarse SR network to recover a coarse high-resolution (HR) image. Then, the coarse HR image is sent to two branches: a fine SR encoder and a prior information estimation network, which extracts the image features, and estimates landmark heatmaps/parsing maps respectively. Both image features and prior information are sent to a fine SR decoder to recover the HR image. To further generate realistic faces, we propose the Face Super-Resolution Generative Adversarial Network (FSRGAN) to incorporate the adversarial loss into FSRNet. Moreover, we introduce two related tasks, face alignment and parsing, as the new evaluation metrics for face SR, which address the inconsistency of classic metrics w.r.t. visual perception. Extensive benchmark experiments show that FSRNet and FSRGAN significantly outperforms state of the arts for very LR face SR, both quantitatively and qualitatively. Code will be made available upon publication.Comment: Chen and Tai contributed equally to this pape

    Exploring efficient neural architectures for linguistic-acoustic mapping in text-to-speech

    Get PDF
    Conversion from text to speech relies on the accurate mapping from linguistic to acoustic symbol sequences, for which current practice employs recurrent statistical models such as recurrent neural networks. Despite the good performance of such models (in terms of low distortion in the generated speech), their recursive structure with intermediate affine transformations tends to make them slow to train and to sample from. In this work, we explore two different mechanisms that enhance the operational efficiency of recurrent neural networks, and study their performance–speed trade-off. The first mechanism is based on the quasi-recurrent neural network, where expensive affine transformations are removed from temporal connections and placed only on feed-forward computational directions. The second mechanism includes a module based on the transformer decoder network, designed without recurrent connections but emulating them with attention and positioning codes. Our results show that the proposed decoder networks are competitive in terms of distortion when compared to a recurrent baseline, whilst being significantly faster in terms of CPU and GPU inference time. The best performing model is the one based on the quasi-recurrent mechanism, reaching the same level of naturalness as the recurrent neural network based model with a speedup of 11.2 on CPU and 3.3 on GPU.Peer ReviewedPostprint (published version
    • …
    corecore