1,188 research outputs found

    An End-to-End Performance Analysis for Service Chaining in a Virtualized Network

    Full text link
    Future mobile networks supporting Internet of Things are expected to provide both high throughput and low latency to user-specific services. One way to overcome this challenge is to adopt Network Function Virtualization (NFV) and Multi-access Edge Computing (MEC). Besides latency constraints, these services may have strict function chaining requirements. The distribution of network functions over different hosts and more flexible routing caused by service function chaining raise new challenges for end-to-end performance analysis. In this paper, as a first step, we analyze an end-to-end communications system that consists of both MEC servers and a server at the core network hosting different types of virtual network functions. We develop a queueing model for the performance analysis of the system consisting of both processing and transmission flows. We propose a method in order to derive analytical expressions of the performance metrics of interest. Then, we show how to apply the similar method to an extended larger system and derive a stochastic model for such systems. We observe that the simulation and analytical results coincide. By evaluating the system under different scenarios, we provide insights for the decision making on traffic flow control and its impact on critical performance metrics.Comment: 30 pages. arXiv admin note: substantial text overlap with arXiv:1811.0233

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Optimal Orchestration of Virtual Network Functions

    Full text link
    -The emergence of Network Functions Virtualization (NFV) is bringing a set of novel algorithmic challenges in the operation of communication networks. NFV introduces volatility in the management of network functions, which can be dynamically orchestrated, i.e., placed, resized, etc. Virtual Network Functions (VNFs) can belong to VNF chains, where nodes in a chain can serve multiple demands coming from the network edges. In this paper, we formally define the VNF placement and routing (VNF-PR) problem, proposing a versatile linear programming formulation that is able to accommodate specific features and constraints of NFV infrastructures, and that is substantially different from existing virtual network embedding formulations in the state of the art. We also design a math-heuristic able to scale with multiple objectives and large instances. By extensive simulations, we draw conclusions on the trade-off achievable between classical traffic engineering (TE) and NFV infrastructure efficiency goals, evaluating both Internet access and Virtual Private Network (VPN) demands. We do also quantitatively compare the performance of our VNF-PR heuristic with the classical Virtual Network Embedding (VNE) approach proposed for NFV orchestration, showing the computational differences, and how our approach can provide a more stable and closer-to-optimum solution

    Online Load Balancing for Network Functions Virtualization

    Full text link
    Network Functions Virtualization (NFV) aims to support service providers to deploy various services in a more agile and cost-effective way. However, the softwarization and cloudification of network functions can result in severe congestion and low network performance. In this paper, we propose a solution to address this issue. We analyze and solve the online load balancing problem using multipath routing in NFV to optimize network performance in response to the dynamic changes of user demands. In particular, we first formulate the optimization problem of load balancing as a mixed integer linear program for achieving the optimal solution. We then develop the ORBIT algorithm that solves the online load balancing problem. The performance guarantee of ORBIT is analytically proved in comparison with the optimal offline solution. The experiment results on real-world datasets show that ORBIT performs very well for distributing traffic of each service demand across multipaths without knowledge of future demands, especially under high-load conditions
    corecore