990 research outputs found

    An Interactive Preliminary Design System of High Speed Forebody and Inlet Flows

    Get PDF
    This paper demonstrates a simulation-based aerodynamic design process of high speed inlet. A genetic algorithm is integrated into the design process to facilitate the single objective optimization. The objective function is the total pressure recovery and is obtained by using a PNS solver for its computing efficiency. The system developed uses existing software of geometry definition, mesh generation and CFD analysis. The process which produces increasingly desirable design in each genetic evolution over many generations is automatically carried out. A generic two-dimensional inlet is created as a showcase to demonstrate the capabilities of this tool. A parameterized study of geometric shape and size of the showcase is also presented

    Nonlinear analysis of composite shells with application to glass structures

    Get PDF
    Laminated glass is a special composite material, which is characterised by an alternating stiff/soft lay-up owing to the significant stiffness mismatch between glass and PVB. This work is motivated by the need for an efficient and accurate nonlinear model for the analysis of laminated glass structures, which describes well the through-thickness variation of displacement fields and the transverse shear strains and enables large displacement analysis. An efficient lamination model is proposed for the analysis of laminated composites with an alternating stiff/soft lay-up, where the zigzag variation of planar displacements is taken into account by adding to the Reissner-Mindlin formulation a specific set of zigzag functions. Furthermore, a piecewise linear through-thickness distribution of the material transverse shear strain is assumed, which agrees well with the real distribution, yet it avoids layer coupling by not imposing continuity constraints on transverse shear stresses. Local formulations of curved multi-layer shell elements are established employing the proposed lamination model, which are framed within local co-rotational systems to allow large displacement analysis for small-strain problems. In order to eliminate the locking phenomenon for the shell elements, an assumed strain method is employed and improved, which readily addresses shear locking, membrane locking, and distortion locking for each constitutive layer. Furthermore, a local shell system is proposed for the direct definition of the additional zigzag displacement fields and associated parameters, which allows the additional displacement variables to be coupled directly between adjacent elements without being subject to the large displacement co-rotational transformations. The developed multi-layer shell elements are employed in this work for typical laminated glass problems, including double glazing systems for which a novel volume-pressure control algorithm is proposed. Several case studies are finally presented to illustrate the effectiveness and efficiency of the proposed modelling approach for the nonlinear analysis of glass structures.Open Acces

    Limit-point buckling analyses using solid, shell and solid–shell elements

    Get PDF
    In this paper, the recently-developed solid-shell element SHB8PS is used for the analysis of a representative set of popular limit-point buckling benchmark problems. For this purpose, the element has been implemented in Abaqus/Standard finite element software and the modified Riks method was employed as an efficient path-following strategy. For the. benchmark problems tested, the new element shows better performance compared to solid elements and often performs as well as state-of-the-art shell elements. In contrast to shell elements, it allows for the accurate prescription of boundary conditions as applied to the actual edges of the structure.Agence Nationale de la Recherche, France (ANR-005-RNMP-007

    Developments on Shell and Solid-Shell finite elements technology in nonlinear continuum mechanics

    Get PDF
    Tese de mestrado. Faculdade de Engenharia. Universidade do Porto. 199

    Dynamics of Rigid Bodies and Flexible Beam Structures

    Get PDF
    corecore