1,973 research outputs found

    e-SNLI: Natural Language Inference with Natural Language Explanations

    Get PDF
    In order for machine learning to garner widespread public adoption, models must be able to provide interpretable and robust explanations for their decisions, as well as learn from human-provided explanations at train time. In this work, we extend the Stanford Natural Language Inference dataset with an additional layer of human-annotated natural language explanations of the entailment relations. We further implement models that incorporate these explanations into their training process and output them at test time. We show how our corpus of explanations, which we call e-SNLI, can be used for various goals, such as obtaining full sentence justifications of a model's decisions, improving universal sentence representations and transferring to out-of-domain NLI datasets. Our dataset thus opens up a range of research directions for using natural language explanations, both for improving models and for asserting their trust.Comment: NeurIPS 201

    Q2ATransformer: Improving Medical VQA via an Answer Querying Decoder

    Full text link
    Medical Visual Question Answering (VQA) systems play a supporting role to understand clinic-relevant information carried by medical images. The questions to a medical image include two categories: close-end (such as Yes/No question) and open-end. To obtain answers, the majority of the existing medical VQA methods relies on classification approaches, while a few works attempt to use generation approaches or a mixture of the two. The classification approaches are relatively simple but perform poorly on long open-end questions. To bridge this gap, in this paper, we propose a new Transformer based framework for medical VQA (named as Q2ATransformer), which integrates the advantages of both the classification and the generation approaches and provides a unified treatment for the close-end and open-end questions. Specifically, we introduce an additional Transformer decoder with a set of learnable candidate answer embeddings to query the existence of each answer class to a given image-question pair. Through the Transformer attention, the candidate answer embeddings interact with the fused features of the image-question pair to make the decision. In this way, despite being a classification-based approach, our method provides a mechanism to interact with the answer information for prediction like the generation-based approaches. On the other hand, by classification, we mitigate the task difficulty by reducing the search space of answers. Our method achieves new state-of-the-art performance on two medical VQA benchmarks. Especially, for the open-end questions, we achieve 79.19% on VQA-RAD and 54.85% on PathVQA, with 16.09% and 41.45% absolute improvements, respectively

    PMC-VQA: Visual Instruction Tuning for Medical Visual Question Answering

    Full text link
    In this paper, we focus on the problem of Medical Visual Question Answering (MedVQA), which is crucial in efficiently interpreting medical images with vital clinic-relevant information. Firstly, we reframe the problem of MedVQA as a generation task that naturally follows the human-machine interaction, we propose a generative-based model for medical visual understanding by aligning visual information from a pre-trained vision encoder with a large language model. Secondly, we establish a scalable pipeline to construct a large-scale medical visual question-answering dataset, named PMC-VQA, which contains 227k VQA pairs of 149k images that cover various modalities or diseases. Thirdly, we pre-train our proposed model on PMC-VQA and then fine-tune it on multiple public benchmarks, e.g., VQA-RAD and SLAKE, outperforming existing work by a large margin. Additionally, we propose a test set that has undergone manual verification, which is significantly more challenging, even the best models struggle to solve

    Self-supervised vision-language pretraining for Medical visual question answering

    Full text link
    Medical image visual question answering (VQA) is a task to answer clinical questions, given a radiographic image, which is a challenging problem that requires a model to integrate both vision and language information. To solve medical VQA problems with a limited number of training data, pretrain-finetune paradigm is widely used to improve the model generalization. In this paper, we propose a self-supervised method that applies Masked image modeling, Masked language modeling, Image text matching and Image text alignment via contrastive learning (M2I2) for pretraining on medical image caption dataset, and finetunes to downstream medical VQA tasks. The proposed method achieves state-of-the-art performance on all the three public medical VQA datasets. Our codes and models are available at https://github.com/pengfeiliHEU/M2I2.Comment: 5 pages, 3 figure

    A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks

    Full text link
    Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data. Unlike conventional neural networks or updated versions of Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM), transformer models excel in handling long dependencies between input sequence elements and enable parallel processing. As a result, transformer-based models have attracted substantial interest among researchers in the field of artificial intelligence. This can be attributed to their immense potential and remarkable achievements, not only in Natural Language Processing (NLP) tasks but also in a wide range of domains, including computer vision, audio and speech processing, healthcare, and the Internet of Things (IoT). Although several survey papers have been published highlighting the transformer's contributions in specific fields, architectural differences, or performance evaluations, there is still a significant absence of a comprehensive survey paper encompassing its major applications across various domains. Therefore, we undertook the task of filling this gap by conducting an extensive survey of proposed transformer models from 2017 to 2022. Our survey encompasses the identification of the top five application domains for transformer-based models, namely: NLP, Computer Vision, Multi-Modality, Audio and Speech Processing, and Signal Processing. We analyze the impact of highly influential transformer-based models in these domains and subsequently classify them based on their respective tasks using a proposed taxonomy. Our aim is to shed light on the existing potential and future possibilities of transformers for enthusiastic researchers, thus contributing to the broader understanding of this groundbreaking technology

    CL-CrossVQA: A Continual Learning Benchmark for Cross-Domain Visual Question Answering

    Full text link
    Visual Question Answering (VQA) is a multi-discipline research task. To produce the right answer, it requires an understanding of the visual content of images, the natural language questions, as well as commonsense reasoning over the information contained in the image and world knowledge. Recently, large-scale Vision-and-Language Pre-trained Models (VLPMs) have been the mainstream approach to VQA tasks due to their superior performance. The standard practice is to fine-tune large-scale VLPMs pre-trained on huge general-domain datasets using the domain-specific VQA datasets. However, in reality, the application domain can change over time, necessitating VLPMs to continually learn and adapt to new domains without forgetting previously acquired knowledge. Most existing continual learning (CL) research concentrates on unimodal tasks, whereas a more practical application scenario, i.e, CL on cross-domain VQA, has not been studied. Motivated by this, we introduce CL-CrossVQA, a rigorous Continual Learning benchmark for Cross-domain Visual Question Answering, through which we conduct extensive experiments on 4 VLPMs, 4 CL approaches, and 5 VQA datasets from different domains. In addition, by probing the forgetting phenomenon of the intermediate layers, we provide insights into how model architecture affects CL performance, why CL approaches can help mitigate forgetting in VLPMs to some extent, and how to design CL approaches suitable for VLPMs in this challenging continual learning environment. To facilitate future work on CL for cross-domain VQA, we will release our datasets and code.Comment: 10 pages, 6 figure

    Recent, rapid advancement in visual question answering architecture: a review

    Full text link
    Understanding visual question answering is going to be crucial for numerous human activities. However, it presents major challenges at the heart of the artificial intelligence endeavor. This paper presents an update on the rapid advancements in visual question answering using images that have occurred in the last couple of years. Tremendous growth in research on improving visual question answering system architecture has been published recently, showing the importance of multimodal architectures. Several points on the benefits of visual question answering are mentioned in the review paper by Manmadhan et al. (2020), on which the present article builds, including subsequent updates in the field.Comment: 11 page
    corecore