38 research outputs found

    KFU at CLEF eHealth 2017 Task 1: ICD-10 coding of English death certificates with recurrent neural networks

    Get PDF
    This paper describes the participation of the KFU team in the CLEF eHealth 2017 challenge. Specifically, we participated in Task 1, namely "Multilingual Information Extraction - ICD-10 coding" for which we implemented recurrent neural networks to automatically assign ICD-10 codes to fragments of death certificates written in English. Our system uses Long Short-Term Memory (LSTM) to map the input sequence into a vector representation, and then another LSTM to decode the target sequence from the vector. We initialize the input representations with word embeddings trained on user posts in social media. The encoderdecoder model obtained F-measure of 85.01% on a full test set with significant improvement as compared to the average score of 62.2% for all participants' approaches. We also obtained significant improvement from 26.1% to 44.33% on an external test set as compared to the average score of the submitted runs

    HiCu: Leveraging Hierarchy for Curriculum Learning in Automated ICD Coding

    Full text link
    There are several opportunities for automation in healthcare that can improve clinician throughput. One such example is assistive tools to document diagnosis codes when clinicians write notes. We study the automation of medical code prediction using curriculum learning, which is a training strategy for machine learning models that gradually increases the hardness of the learning tasks from easy to difficult. One of the challenges in curriculum learning is the design of curricula -- i.e., in the sequential design of tasks that gradually increase in difficulty. We propose Hierarchical Curriculum Learning (HiCu), an algorithm that uses graph structure in the space of outputs to design curricula for multi-label classification. We create curricula for multi-label classification models that predict ICD diagnosis and procedure codes from natural language descriptions of patients. By leveraging the hierarchy of ICD codes, which groups diagnosis codes based on various organ systems in the human body, we find that our proposed curricula improve the generalization of neural network-based predictive models across recurrent, convolutional, and transformer-based architectures. Our code is available at https://github.com/wren93/HiCu-ICD.Comment: To appear at Machine Learning for Healthcare Conference (MLHC2022

    Deep learning for ICD coding: Looking for medical concepts in clinical documents in english and in French

    Get PDF
    © Springer Nature Switzerland AG 2018. Medical Concept Coding (MCD) is a crucial task in biomedical information extraction. Recent advances in neural network modeling have demonstrated its usefulness in the task of natural language processing. Modern framework of sequence-to-sequence learning that was initially used for recurrent neural networks has been shown to provide powerful solution to tasks such as Named Entity Recognition or Medical Concept Coding. We have addressed the identification of clinical concepts within the International Classification of Diseases version 10 (ICD-10) in two benchmark data sets of death certificates provided for the task 1 in the CLEF eHealth shared task 2017. A proposed architecture combines ideas from recurrent neural networks and traditional text retrieval term weighting schemes. We found that our models reach accuracy of 75% and 86% as evaluated by the F-measure on the CépiDc corpus of French texts and on the CDC corpus of English texts, respectfully. The proposed models can be employed for coding electronic medical records with ICD codes including diagnosis and procedure codes

    A Label Attention Model for ICD Coding from Clinical Text

    Full text link
    ICD coding is a process of assigning the International Classification of Disease diagnosis codes to clinical/medical notes documented by health professionals (e.g. clinicians). This process requires significant human resources, and thus is costly and prone to error. To handle the problem, machine learning has been utilized for automatic ICD coding. Previous state-of-the-art models were based on convolutional neural networks, using a single/several fixed window sizes. However, the lengths and interdependence between text fragments related to ICD codes in clinical text vary significantly, leading to the difficulty of deciding what the best window sizes are. In this paper, we propose a new label attention model for automatic ICD coding, which can handle both the various lengths and the interdependence of the ICD code related text fragments. Furthermore, as the majority of ICD codes are not frequently used, leading to the extremely imbalanced data issue, we additionally propose a hierarchical joint learning mechanism extending our label attention model to handle the issue, using the hierarchical relationships among the codes. Our label attention model achieves new state-of-the-art results on three benchmark MIMIC datasets, and the joint learning mechanism helps improve the performances for infrequent codes.Comment: In Proceedings of IJCAI 2020 (Main Track

    A study of Machine Learning models for Clinical Coding of Medical Reports at CodiEsp 2020

    Get PDF
    The task of identifying one or more diseases associated with a patient’s clinical condition is often very complex, even for doctors and specialists. This process is usually time-consuming and has to take into account different aspects of what has occurred, including symptoms elicited and previous healthcare situations. The medical diagnosis is often provided to patients in the form of written paper without any correlation with a national or international standard. Even if the WHO (World Health Organization) released the ICD10 international glossary of diseases, almost no doctor has enough time to manually associate the patient’s clinical history with international codes. The CodiEsp task at CLEF 2020 addressed this issue by proposing the development of an automatic system to deal with this task. Our solution investigated different machine learning strategies in order to identify an approach to face that challenge. The main outcomes of the experiments showed that a strategy based on BERT for pre-filtering and one based on BiLSTMCNN-SelfAttention for classification provide valuable results. We carried out several experiments on a subset of the training set for tuning the final model submitted to the challenge. In particular, we analyzed the impact of the algorithm, the input encoding strategy, and the thresholds for multi-label classification. A set of experiments has been carried out also during a post hoc analysis. The experiments confirmed that the strategy submitted to the CodiEsp task is the best performing one among those evaluated, and it allowed us to obtain a final mean average error value on the test set equal to 0.202. To support future developments of the proposed approach and the replicability of the experiments we decided to make the source code publicly accessible

    Deep Neural Models for Medical Concept Normalization in User-Generated Texts

    Full text link
    In this work, we consider the medical concept normalization problem, i.e., the problem of mapping a health-related entity mention in a free-form text to a concept in a controlled vocabulary, usually to the standard thesaurus in the Unified Medical Language System (UMLS). This is a challenging task since medical terminology is very different when coming from health care professionals or from the general public in the form of social media texts. We approach it as a sequence learning problem with powerful neural networks such as recurrent neural networks and contextualized word representation models trained to obtain semantic representations of social media expressions. Our experimental evaluation over three different benchmarks shows that neural architectures leverage the semantic meaning of the entity mention and significantly outperform an existing state of the art models.Comment: This is preprint of the paper "Deep Neural Models for Medical Concept Normalization in User-Generated Texts" to be published at ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Student Research Worksho
    corecore