3,823 research outputs found

    Predicting Exploitation of Disclosed Software Vulnerabilities Using Open-source Data

    Full text link
    Each year, thousands of software vulnerabilities are discovered and reported to the public. Unpatched known vulnerabilities are a significant security risk. It is imperative that software vendors quickly provide patches once vulnerabilities are known and users quickly install those patches as soon as they are available. However, most vulnerabilities are never actually exploited. Since writing, testing, and installing software patches can involve considerable resources, it would be desirable to prioritize the remediation of vulnerabilities that are likely to be exploited. Several published research studies have reported moderate success in applying machine learning techniques to the task of predicting whether a vulnerability will be exploited. These approaches typically use features derived from vulnerability databases (such as the summary text describing the vulnerability) or social media posts that mention the vulnerability by name. However, these prior studies share multiple methodological shortcomings that inflate predictive power of these approaches. We replicate key portions of the prior work, compare their approaches, and show how selection of training and test data critically affect the estimated performance of predictive models. The results of this study point to important methodological considerations that should be taken into account so that results reflect real-world utility

    Pitfalls in Language Models for Code Intelligence: A Taxonomy and Survey

    Full text link
    Modern language models (LMs) have been successfully employed in source code generation and understanding, leading to a significant increase in research focused on learning-based code intelligence, such as automated bug repair, and test case generation. Despite their great potential, language models for code intelligence (LM4Code) are susceptible to potential pitfalls, which hinder realistic performance and further impact their reliability and applicability in real-world deployment. Such challenges drive the need for a comprehensive understanding - not just identifying these issues but delving into their possible implications and existing solutions to build more reliable language models tailored to code intelligence. Based on a well-defined systematic research approach, we conducted an extensive literature review to uncover the pitfalls inherent in LM4Code. Finally, 67 primary studies from top-tier venues have been identified. After carefully examining these studies, we designed a taxonomy of pitfalls in LM4Code research and conducted a systematic study to summarize the issues, implications, current solutions, and challenges of different pitfalls for LM4Code systems. We developed a comprehensive classification scheme that dissects pitfalls across four crucial aspects: data collection and labeling, system design and learning, performance evaluation, and deployment and maintenance. Through this study, we aim to provide a roadmap for researchers and practitioners, facilitating their understanding and utilization of LM4Code in reliable and trustworthy ways

    How Effective Are Neural Networks for Fixing Security Vulnerabilities

    Full text link
    Security vulnerability repair is a difficult task that is in dire need of automation. Two groups of techniques have shown promise: (1) large code language models (LLMs) that have been pre-trained on source code for tasks such as code completion, and (2) automated program repair (APR) techniques that use deep learning (DL) models to automatically fix software bugs. This paper is the first to study and compare Java vulnerability repair capabilities of LLMs and DL-based APR models. The contributions include that we (1) apply and evaluate five LLMs (Codex, CodeGen, CodeT5, PLBART and InCoder), four fine-tuned LLMs, and four DL-based APR techniques on two real-world Java vulnerability benchmarks (Vul4J and VJBench), (2) design code transformations to address the training and test data overlapping threat to Codex, (3) create a new Java vulnerability repair benchmark VJBench, and its transformed version VJBench-trans and (4) evaluate LLMs and APR techniques on the transformed vulnerabilities in VJBench-trans. Our findings include that (1) existing LLMs and APR models fix very few Java vulnerabilities. Codex fixes 10.2 (20.4%), the most number of vulnerabilities. (2) Fine-tuning with general APR data improves LLMs' vulnerability-fixing capabilities. (3) Our new VJBench reveals that LLMs and APR models fail to fix many Common Weakness Enumeration (CWE) types, such as CWE-325 Missing cryptographic step and CWE-444 HTTP request smuggling. (4) Codex still fixes 8.3 transformed vulnerabilities, outperforming all the other LLMs and APR models on transformed vulnerabilities. The results call for innovations to enhance automated Java vulnerability repair such as creating larger vulnerability repair training data, tuning LLMs with such data, and applying code simplification transformation to facilitate vulnerability repair.Comment: This paper has been accepted to appear in the proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2023), and to be presented at the conference, that will be held in Seattle, USA, 17-21 July 202

    A Survey of Learning-based Automated Program Repair

    Full text link
    Automated program repair (APR) aims to fix software bugs automatically and plays a crucial role in software development and maintenance. With the recent advances in deep learning (DL), an increasing number of APR techniques have been proposed to leverage neural networks to learn bug-fixing patterns from massive open-source code repositories. Such learning-based techniques usually treat APR as a neural machine translation (NMT) task, where buggy code snippets (i.e., source language) are translated into fixed code snippets (i.e., target language) automatically. Benefiting from the powerful capability of DL to learn hidden relationships from previous bug-fixing datasets, learning-based APR techniques have achieved remarkable performance. In this paper, we provide a systematic survey to summarize the current state-of-the-art research in the learning-based APR community. We illustrate the general workflow of learning-based APR techniques and detail the crucial components, including fault localization, patch generation, patch ranking, patch validation, and patch correctness phases. We then discuss the widely-adopted datasets and evaluation metrics and outline existing empirical studies. We discuss several critical aspects of learning-based APR techniques, such as repair domains, industrial deployment, and the open science issue. We highlight several practical guidelines on applying DL techniques for future APR studies, such as exploring explainable patch generation and utilizing code features. Overall, our paper can help researchers gain a comprehensive understanding about the achievements of the existing learning-based APR techniques and promote the practical application of these techniques. Our artifacts are publicly available at \url{https://github.com/QuanjunZhang/AwesomeLearningAPR}

    SoK:Prudent Evaluation Practices for Fuzzing

    Get PDF
    Fuzzing has proven to be a highly effective approach to uncover software bugs over the past decade. After AFL popularized the groundbreaking concept of lightweight coverage feedback, the field of fuzzing has seen a vast amount of scientific work proposing new techniques, improving methodological aspects of existing strategies, or porting existing methods to new domains. All such work must demonstrate its merit by showing its applicability to a problem, measuring its performance, and often showing its superiority over existing works in a thorough, empirical evaluation. Yet, fuzzing is highly sensitive to its target, environment, and circumstances, e.g., randomness in the testing process. After all, relying on randomness is one of the core principles of fuzzing, governing many aspects of a fuzzer's behavior. Combined with the often highly difficult to control environment, the reproducibility of experiments is a crucial concern and requires a prudent evaluation setup. To address these threats to validity, several works, most notably Evaluating Fuzz Testing by Klees et al., have outlined how a carefully designed evaluation setup should be implemented, but it remains unknown to what extent their recommendations have been adopted in practice. In this work, we systematically analyze the evaluation of 150 fuzzing papers published at the top venues between 2018 and 2023. We study how existing guidelines are implemented and observe potential shortcomings and pitfalls. We find a surprising disregard of the existing guidelines regarding statistical tests and systematic errors in fuzzing evaluations. For example, when investigating reported bugs, we find that the search for vulnerabilities in real-world software leads to authors requesting and receiving CVEs of questionable quality. Extending our literature analysis to the practical domain, we attempt to reproduce claims of eight fuzzing papers. These case studies allow us to assess the practical reproducibility of fuzzing research and identify archetypal pitfalls in the evaluation design. Unfortunately, our reproduced results reveal several deficiencies in the studied papers, and we are unable to fully support and reproduce the respective claims. To help the field of fuzzing move toward a scientifically reproducible evaluation strategy, we propose updated guidelines for conducting a fuzzing evaluation that future work should follow
    corecore