72 research outputs found

    Epistemic Modality, Mind, and Mathematics

    Get PDF
    This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the computational theory of mind; metaphysical modality; the types of mathematical modality; to the epistemic status of large cardinal axioms, undecidable propositions, and abstraction principles in the philosophy of mathematics; to the modal profile of rational intuition; and to the types of intention, when the latter is interpreted as a modal mental state. Chapter \textbf{2} argues for a novel type of expressivism based on the duality between the categories of coalgebras and algebras, and argues that the duality permits of the reconciliation between modal cognitivism and modal expressivism. Chapter \textbf{3} provides an abstraction principle for epistemic intensions. Chapter \textbf{4} advances a topic-sensitive two-dimensional truthmaker semantics, and provides three novel interpretations of the framework along with the epistemic and metasemantic. Chapter \textbf{5} applies the fixed points of the modal Ό\mu-calculus in order to account for the iteration of epistemic states, by contrast to availing of modal axiom 4 (i.e. the KK principle). Chapter \textbf{6} advances a solution to the Julius Caesar problem based on Fine's "criterial" identity conditions which incorporate conditions on essentiality and grounding. Chapter \textbf{7} provides a ground-theoretic regimentation of the proposals in the metaphysics of consciousness and examines its bearing on the two-dimensional conceivability argument against physicalism. The topic-sensitive epistemic two-dimensional truthmaker semantics developed in chapter \textbf{4} is availed of in order for epistemic states to be a guide to metaphysical states in the hyperintensional setting. Chapter \textbf{8} examines the modal commitments of abstractionism, in particular necessitism, and epistemic modality and the epistemology of abstraction. Chapter \textbf{9} examines the modal profile of Ω\Omega-logic in set theory. Chapter \textbf{10} examines the interaction between epistemic two-dimensional truthmaker semantics, epistemic set theory, and absolute decidability. Chapter \textbf{11} avails of modal coalgebraic automata to interpret the defining properties of indefinite extensibility, and avails of epistemic two-dimensional semantics in order to account for the interaction of the interpretational and objective modalities thereof. The hyperintensional, topic-sensitive epistemic two-dimensional truthmaker semantics developed in chapter \textbf{2} is applied in chapters \textbf{7}, \textbf{8}, \textbf{10}, and \textbf{11}. Chapter \textbf{12} provides a modal logic for rational intuition and provides four models of hyperintensional semantics. Chapter \textbf{13} examines modal responses to the alethic paradoxes. Chapter \textbf{14} examines, finally, the modal semantics for the different types of intention and the relation of the latter to evidential decision theory

    Dagstuhl News January - December 2001

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    From Logic Programming to Human Reasoning:: How to be Artificially Human

    Get PDF
    Results of psychological experiments have shown that humans make assumptions, which are not necessarily valid, that they are influenced by their background knowledge and that they reason non-monotonically. These observations show that classical logic does not seem to be adequate for modeling human reasoning. Instead of assuming that humans do not reason logically at all, we take the view that humans do not reason classical logically. Our goal is to model episodes of human reasoning and for this purpose we investigate the so-called Weak Completion Semantics. The Weak Completion Semantics is a Logic Programming approach and considers the least model of the weak completion of logic programs under the three-valued Ɓukasiewicz logic. As the Weak Completion Semantics is relatively new and has not yet been extensively investigated, we first motivate why this approach is interesting for modeling human reasoning. After that, we show the formal correspondence to the already established Stable Model Semantics and Well-founded Semantics. Next, we present an extension with an additional context operator, that allows us to express negation as failure. Finally, we propose a contextual abductive reasoning approach, in which the context of observations is relevant. Some properties do not hold anymore under this extension. Besides discussing the well-known psychological experiments Byrne’s suppression task and Wason’s selection task, we investigate an experiment in spatial reasoning, an experiment in syllogistic reasoning and an experiment that examines the belief-bias effect. We show that the results of these experiments can be adequately modeled under the Weak Completion Semantics. A result which stands out here, is the outcome of modeling the syllogistic reasoning experiment, as we have a higher prediction match with the participants’ answers than any of twelve current cognitive theories. We present an abstract evaluation system for conditionals and discuss well-known examples from the literature. We show that in this system, conditionals can be evaluated in various ways and we put up the hypothesis that humans use a particular evaluation strategy, namely that they prefer abduction to revision. We also discuss how relevance plays a role in the evaluation process of conditionals. For this purpose we propose a semantic definition of relevance and justify why this is preferable to a exclusively syntactic definition. Finally, we show that our system is more general than another system, which has recently been presented in the literature. Altogether, this thesis shows one possible path on bridging the gap between Cognitive Science and Computational Logic. We investigated findings from psychological experiments and modeled their results within one formal approach, the Weak Completion Semantics. Furthermore, we proposed a general evaluation system for conditionals, for which we suggest a specific evaluation strategy. Yet, the outcome cannot be seen as the ultimate solution but delivers a starting point for new open questions in both areas

    Computational Complexity of Strong Admissibility for Abstract Dialectical Frameworks

    Get PDF
    Abstract dialectical frameworks (ADFs) have been introduced as a formalism for modeling and evaluating argumentation allowing general logical satisfaction conditions. Different criteria used to settle the acceptance of arguments arecalled semantics. Semantics of ADFs have so far mainly been defined based on the concept of admissibility. Recently, the notion of strong admissibility has been introduced for ADFs. In the current work we study the computational complexityof the following reasoning tasks under strong admissibility semantics. We address 1. the credulous/skeptical decision problem; 2. the verification problem; 3. the strong justification problem; and 4. the problem of finding a smallest witness of strong justification of a queried argument
    • 

    corecore