118 research outputs found

    LONG-TERM IMPACT OF TILLAGE AND CROPPING MANAGEMENTS ON SOIL HYDRO-PHYSICAL PROPERTIES AND YIELD

    Get PDF
    Soil physical and hydraulic properties control the major soil functions related to the imbibition, transmission and retention of water, air, heat and nutrients. Adoption of no-tillage in Tennessee through the last decades has considerably decreased the fluvial soil losses. However, the long-term effect of no-tillage on soil hydro-physical properties and its interaction with companion practices such as cover crops and crop sequence has not been fully discovered.In this project, three long-term experiments located in West Tennessee Research and Education Center in Milan and Jackson, TN were studied in 2015 and 2016 for soil hydro-physical properties. The effect of 34 years of tillage, fertilization and cover crop, 15 years of crop rotation on no-tillage with winter fallow and 37 years of a range of tillage intensities and no-tillage with and without cover crop on soil physical properties were assessed. Relationship between soil physical properties were determined and by relating the soil physical properties to corn, cotton and soybean yield and long-term yield stability, the most effective cropping and tillage managements were identified.Long-term no-tillage substantially improved soil aggregation, water infiltration and transmission and cotton yield than conventional tillage. Effect of cover crops on measured soil physical properties were less evident than the effect of no-tillage. However, planting hairy vetch and wheat cover crops improved the soil aggregation and increased the water infiltration and transmission significantly compared with no cover crop. No-tillage planted with hairy vetch cover crop experienced significantly higher quasi-steady and cumulative infiltration compared with the other treatment combinations in both years. Cropping corn, cotton and soybean in double cropping sequences did not favor soil in improved physical quality than monoculture while existence of corn in cropping system either as continuous cropping or in sequence improved soil physical quality. Corn rotated with soybean and cotton increased yield and decreased the long-term variance in soybean yield. Under sub-humid climate of Tennessee with relatively high decomposition rate of organic matter, the magnitude of residue turnover and below-ground root activity was found to be key factors increasing the no-tillage potential for additional improvement in soil quality and yield

    Explaining and Refining Decision-Theoretic Choices

    Get PDF
    As the need to make complex choices among competing alternative actions is ubiquitous, the reasoning machinery of many intelligent systems will include an explicit model for making choices. Decision analysis is particularly useful for modelling such choices, and its potential use in intelligent systems motivates the construction of facilities for automatically explaining decision-theoretic choices and for helping users to incrementally refine the knowledge underlying them. The proposed thesis addresses the problem of providing such facilities. Specifically, we propose the construction of a domain-independent facility called UTIL, for explaining and refining a restricted but widely applicable decision-theoretic model called the additive multi-attribute value model. In this proposal we motivate the task, address the related issues, and present preliminary solutions in the context of examples from the domain of intelligent process control

    Coronaviruses Research in BRICS Countries

    Get PDF
    SARS-CoV-2 has infected more than 105 million people worldwide. During this pandemic, researchers and clinicians have been working to understand the molecular mechanisms that underpin viral pathogenesis by studying viral–host interactions. Now, with the global rollout of various COVID-19 vaccines—based on the neutralization of the spike protein using different technologies—viral immunology and cell-based immunity are being investigated. Researchers are also studying how various SARS-CoV-2 genetic mutations will impact the efficacy of these COVID-19 vaccines. At the same time, various antiviral drugs have been identified or repurposed that have potential as anti-SARS-CoV-2 treatments. BRICS (Brazil, Russia, India, China, and South Africa) is the acronym used to associate five major emerging national economies. The BRICS countries are known for their significant influence on regional affairs, including being leaders in scientific and clinical research and innovation. This Special Issue includes researchers from BRICS countries, in particular South Africa, involved in the study of SARS-CoV-2 and COVID-19. Original articles, as well as new perspectives or reviews on the matter, were welcomed. Research in the fields of vaccine studies, pathogenesis, genetic mutations, viral immunology, and antiviral drugs were especially encouraged

    Using storage factors to balance storage subsystem loads

    Get PDF
    Computer Scienc

    EFFECT OF LOW AND HIGH- KINETIC ENERGY WETTING ON QUALITY OF SEDIMENT PRODUCED BY INTERRILL EROSION

    Get PDF
    Raindrop kinetic energy and sheet flow can disintegrate aggregates during interrill erosion, a process responsible for non point source pollution. Also, the dissolution process during aggregate wetting can affect interrill erosion. These factors can be responsible for changes in particle size distribution in the sediment, especially when different tillage systems are compared. The effect of soil tillage and management on soil properties is not uniform, which determine a wide range of runoff and sediment delivery rate. Variety in these rates can be associated with pore functions and their interactions with aggregate stability. One of the objectives of this study was to analyze the wetting behavior of soil aggregates from soils under conventional tillage compared with soils under no tillage. It was expected that the wetting rate is a function of pore system and that different tillage systems would affect the soil wetting behavior based on their impact on soil structure and shape. The second objective was to analyze the relationships among soil wetting rate, particle movement, organic carbon (OC) and iron release with the sediment produced via interrill erosion. A rainfall simulation experiment was performed in the field to determine the effect of low and fast soil wetting on total soil loss through high and low kinetic rainfall energy, sediment particle size distribution and OC loss. Two soils that differed in soil textural composition and that were under conventional and no tillage were investigated. Soil loss depended largely on soil characteristics and wetting rate. Particle size distribution of sediment was changed by treatment and the proportion of particles smaller than 0.053 mm increased over time, at any kinetic energy wetting level. Temporal OC and iron release were constant, which required a continuous source principally due to aggregate slaking. An empirical model was proposed to improve an interrill erosion equation by using a bond-dissolution mechanism that identified soil as a regulator of particle release

    2012 Annual Report of the Graduate School of Engineering and Management, Air Force Institute of Technology

    Get PDF
    The Graduate School\u27s Annual Report highlights research focus areas, new academic programs, faculty accomplishments and news, and provides top-level sponsor-funded research data and information

    The Information Efficiency of the Corporate Bond Market

    Get PDF

    Cyber- Physical Robustness Enhancement Strategies for Demand Side Energy Systems

    Full text link
    An integrated Cyber-Physical System (CPS) system realizes the two-way communication between end-users and power generation in which customers are able to actively re-shaped their consumption profiles to facilitate the energy efficiency of the grid. However, large-scale implementations of distributed assets and advanced communication infrastructures also increase the risks of grid operation. This thesis aims to enhance the robustness of the entire demand-side system in a cyber-physical environment and develop comprehensive strategies about outage energy management (i.e., community-level scheduling and appliance-level energy management), communications infrastructure development, and cybersecurity controls that encounter virus attacks. All these aspects facilitate the demand-side system’s self-serve capability and operational robustness under extreme conditions and dangerous scenarios. The research that contributes to this thesis is grouped around and builds a general scheme to enhance the robustness of CPS demand-side energy system with outage considerations, communication network layouts, and virus intrusions. Under system outage, there are two layers for maximizing the duration of self-power supply duration in extreme conditions. The study first proposed a resilient energy management system for residential communities (CEMS), by scheduling and coordinating the battery energy storage system and energy consumption of houses/units. Moreover, it also proposed a hierarchical resilient energy management system (EMS) by fully considering the appliance-level local scheduling. The method also takes into account customer satisfaction and lifestyle preferences in order to form the optimal outcome. To further enhance the robustness of the CPS system, a complex multi-hop wireless remote metering network model for communication layout on the CPS demand side was proposed. This decreased the number and locations of data centers on the demand side and reduced the security risk of communication and the infrastructure cost of the smart grid for residential energy management. A novel evolutionary aggregation algorithm (EAA) was proposed to obtain the minimum number and locations of the local data centers required to fulfill the connectivity of the smart meters. Finally, the potential for virus attacks has also been studied as well. A trade-off strategy to confront viruses in the system with numerous network nodes is proposed. The allocation of antivirus programs and schemes are studied to avoid system crashes and achieve the minimum potential damages. A DOWNHILL-TRADE OFF algorithm is proposed to address an appropriate allocation strategy under the time evolution of the expected state of the network. Simulations are conducted using the data from the Smart Grid, Smart City national demonstration project trials

    Air Force Institute of Technology Research Report 2015

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics
    • …
    corecore