8,032 research outputs found

    Stacked Penalized Logistic Regression for Selecting Views in Multi-View Learning

    Full text link
    In biomedical research, many different types of patient data can be collected, such as various types of omics data and medical imaging modalities. Applying multi-view learning to these different sources of information can increase the accuracy of medical classification models compared with single-view procedures. However, collecting biomedical data can be expensive and/or burdening for patients, so that it is important to reduce the amount of required data collection. It is therefore necessary to develop multi-view learning methods which can accurately identify those views that are most important for prediction. In recent years, several biomedical studies have used an approach known as multi-view stacking (MVS), where a model is trained on each view separately and the resulting predictions are combined through stacking. In these studies, MVS has been shown to increase classification accuracy. However, the MVS framework can also be used for selecting a subset of important views. To study the view selection potential of MVS, we develop a special case called stacked penalized logistic regression (StaPLR). Compared with existing view-selection methods, StaPLR can make use of faster optimization algorithms and is easily parallelized. We show that nonnegativity constraints on the parameters of the function which combines the views play an important role in preventing unimportant views from entering the model. We investigate the performance of StaPLR through simulations, and consider two real data examples. We compare the performance of StaPLR with an existing view selection method called the group lasso and observe that, in terms of view selection, StaPLR is often more conservative and has a consistently lower false positive rate.Comment: 26 pages, 9 figures. Accepted manuscrip

    Corporate payments networks and credit risk rating

    Get PDF
    Aggregate and systemic risk in complex systems are emergent phenomena depending on two properties: the idiosyncratic risks of the elements and the topology of the network of interactions among them. While a significant attention has been given to aggregate risk assessment and risk propagation once the above two properties are given, less is known about how the risk is distributed in the network and its relations with the topology. We study this problem by investigating a large proprietary dataset of payments among 2.4M Italian firms, whose credit risk rating is known. We document significant correlations between local topological properties of a node (firm) and its risk. Moreover we show the existence of an homophily of risk, i.e. the tendency of firms with similar risk profile to be statistically more connected among themselves. This effect is observed when considering both pairs of firms and communities or hierarchies identified in the network. We leverage this knowledge to show the predictability of the missing rating of a firm using only the network properties of the associated node

    Population Structure and Cryptic Relatedness in Genetic Association Studies

    Get PDF
    We review the problem of confounding in genetic association studies, which arises principally because of population structure and cryptic relatedness. Many treatments of the problem consider only a simple ``island'' model of population structure. We take a broader approach, which views population structure and cryptic relatedness as different aspects of a single confounder: the unobserved pedigree defining the (often distant) relationships among the study subjects. Kinship is therefore a central concept, and we review methods of defining and estimating kinship coefficients, both pedigree-based and marker-based. In this unified framework we review solutions to the problem of population structure, including family-based study designs, genomic control, structured association, regression control, principal components adjustment and linear mixed models. The last solution makes the most explicit use of the kinships among the study subjects, and has an established role in the analysis of animal and plant breeding studies. Recent computational developments mean that analyses of human genetic association data are beginning to benefit from its powerful tests for association, which protect against population structure and cryptic kinship, as well as intermediate levels of confounding by the pedigree.Comment: Published in at http://dx.doi.org/10.1214/09-STS307 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Multiple imputation for sharing precise geographies in public use data

    Full text link
    When releasing data to the public, data stewards are ethically and often legally obligated to protect the confidentiality of data subjects' identities and sensitive attributes. They also strive to release data that are informative for a wide range of secondary analyses. Achieving both objectives is particularly challenging when data stewards seek to release highly resolved geographical information. We present an approach for protecting the confidentiality of data with geographic identifiers based on multiple imputation. The basic idea is to convert geography to latitude and longitude, estimate a bivariate response model conditional on attributes, and simulate new latitude and longitude values from these models. We illustrate the proposed methods using data describing causes of death in Durham, North Carolina. In the context of the application, we present a straightforward tool for generating simulated geographies and attributes based on regression trees, and we present methods for assessing disclosure risks with such simulated data.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS506 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore