29 research outputs found

    Use of Harsh-Braking Data from Connected Vehicles as a Surrogate Safety Measure

    Get PDF
    Traffic safety may be analyzed with the use of surrogate safety measures, measures of safety that do not incorporate collision data but rather rely on the concept of traffic conflicts. Use of these measures provides several benefits over use of more traditional analysis methods with historical crash data. Surrogate measures eliminate the need to wait for crashes to occur to conduct a safety analysis. The amount of time required for enough crash data to accumulate can be significant, delaying safety analyses. Similarly, these measures allow for safety analysis to be conducted prior to crashes occurring, potentially calling attention to hazardous areas which may be altered to prevent crashes. In addition to these benefits, traffic conflicts occur much more frequently than collisions, generating many more data points which in turn make statistical methods of analysis more effective. Evaluating surrogate safety measures for a particular transportation network is most effectively done with the use of traffic microsimulation or with connected vehicle data. Traffic microsimulation (such as the use of PTV VISSIM) will generate kinematic data that may then be used for computation of surrogate safety measures. A significant amount of research has been done on this topic, resulting in the establishment of algorithms for calculation of several different surrogate measures and validation of these measures. Kinematic data from connected vehicles has also been used for the calculation of surrogate safety measures. One data point collected by connected vehicles is harsh braking events which could serve as a surrogate safety measure. Because drivers usually brake more gently if given the opportunity to do so, harsh braking events indicate that a traffic conflict has occurred or is about to occur. Such events take away the driver’s opportunity to brake gently. This research establishes statistical models which relate harsh braking events to crashes on intersections and segments in Salt Lake City, Utah. The findings indicate that harsh braking events have the effect of reducing expected crashes because they represent traffic conflicts which were remedied through the use of harsh braking as an evasive action. The presence of schools and the presence of left turn lanes were also found to be statistically significant crash predictors. In addition to this research work a paper outlining the existing state of safety analysis with surrogate safety measures and evaluating the usefulness and practicality of various existing measures is presented

    Assessing the Impact of Active Signage Systems on Driving Behavior and Traffic Safety

    Get PDF
    Unsignalized Stop-Controlled Intersections (SCI) are widely used in North America, and account for one out of every ten collisions. Understanding how drivers and pedestrians behave at unsignalized intersections is critical for public safety. Drivers who do not obey the stop-sign’s indication by not coming to a complete stop or miss or fail to stop at SCI create a substantial safety risk. For decades, visibility and placement of road alignments and signage at intersections have been a concern among transportation safety specialists. Deployment of backlit Light-Emitting Diode (LED) or other illuminated signs (also known as active road signs) has been increased especially at hot-spots and locations with known safety problems, or potential collision risks. While these signs are expected to improve safety measures by regulating safe travelers’ passage, their performance is not yet fully understood. Although environmental factors such as intersection type, location, and road design are playing a major role, compositional variables such as driver behaviour, which can be explained in terms of carelessness, lack of attention, or overconfidence, is resulting in a failure to comply with the law of making a complete stop at SCI. Previous empirical research demonstrated some correlation between several variables such as traveller compliance with road signs and alignments, direct and indirect road safety measures, collision/conflict frequency, and road/traffic characteristics. These studies commonly employ before-after or cross-reference analyses to determine the long-term effects of various countermeasures at SCI. A few studies also utilized calibrated micro-simulations models to evaluate the surrogate safety measures at SCI. This thesis defines a methodology to evaluate the safety performance of a new and untested signage without putting traffic at long risk. To evaluate the performance of the signs, the suggested methodology investigates multiple parameters and identifies influencing variables in a conflict-based collision-prediction model at SCI. The proposed methodology is applied to a real-world network in the city of Montreal, with several three-leg SCI equipped with different countermeasures. The experiment was designed in a fashion which isolates the influence of several variables, allowing the focus to be on the impact of the target variable (signage type). Field experiments have been performed to study the driver’s behavior in terms of approaching speed as well as quantitative analysis on reactions to various signs, using different sample groups from the same population. This research sets up a microsimulation model that captures drivers’ behaviour with respect to signage according to the observed data. A genetic algorithm was deployed to calibrate the microsimulation model in terms of turning movement counts and the critical conflicts were calculated at each intersection using vehicle trajectories. Collision-prediction regression models was then developed for the intersections under investigation, using traffic volume and conflict. The results demonstrated a high correlation among countermeasures and drivers’ speed and compliance. The relationship between critical conflicts computed in microsimulation models and actual collisions was found to be statistically significant. The model which includes drivers' compliance in collision-prediction regression was also found to fit the collision data better. However, the results of this study do not support the previous assumption that the conflict-based collision-prediction models fit the collision data better than the volume-based collision-prediction models at SCI, especially with drivers’ compliance supplementary data. Finally, while the backlit signs’ performance was marginally better than that of a normal LED active sign, the difference was not statistically significant. The methodology suggested in this thesis has the potential to be implemented in safety performance evaluation of a countermeasure without placing traffic at danger for an extended period. For instance, when there is apprehension about an adverse effect. Future research could investigate leveraging drivers’ behaviour to countermeasures, to improve the performance of collision-prediction regression models like the one proposed in this thesis. Finally, the results from the performance assessment of the LED active signs can assist transportation specialists in deciding whether or not to deploy these countermeasures

    Assessing Pedestrian Safety Conditions on Campus

    Get PDF
    Pedestrian-related crashes are a significant safety issue in the United States and cause considerable amounts of deaths and economic cost. Pedestrian safety is an issue that must be uniquely evaluated in a college campus, where pedestrian volumes are dense. The objective of this research is to identify issues at specific locations around UCF and suggest solutions for improvement. To address this problem, a survey that identifies pedestrian safety issues and locations is distributed to UCF students and staff, and an evaluation of drivers reactions to pedestrian to vehicle (P2V) warning systems is studied through the use of a NADS MiniSim driving simulator. The survey asks participants to identify problem intersections around campus and other issues as pedestrians or bicyclists in the UCF area. Univariate probit models were created from the survey data to identify which factors contribute to pedestrian safety issues, based off the pedestrian\u27s POV and the driver\u27s POV. The models indicated that the more one is exposed to traffic via walking, biking, and driving to campus contributes to less safe experiences. The models also show that higher concerns with drivers not yielding, unsafety of crossing the intersections, and the number of locations to cross, indicate less safe pedestrian experiences from the point of view of pedestrians and drivers. A promising solution for pedestrian safety is Pedestrian to Vehicle (P2V) communication. This study simulates P2V connectivity using a NADS MiniSim Driving Simulator to study the effectiveness of the warning system on drivers. According to the results, the P2V warning system significantly reduced the number of crashes in the tested pre-crash scenarios by 88%. Particularly, the P2V warning system can help decrease the driver\u27s reaction time as well as impact velocity if the crash were to occur
    corecore