156,628 research outputs found

    Efficient exploration with Double Uncertain Value Networks

    Full text link
    This paper studies directed exploration for reinforcement learning agents by tracking uncertainty about the value of each available action. We identify two sources of uncertainty that are relevant for exploration. The first originates from limited data (parametric uncertainty), while the second originates from the distribution of the returns (return uncertainty). We identify methods to learn these distributions with deep neural networks, where we estimate parametric uncertainty with Bayesian drop-out, while return uncertainty is propagated through the Bellman equation as a Gaussian distribution. Then, we identify that both can be jointly estimated in one network, which we call the Double Uncertain Value Network. The policy is directly derived from the learned distributions based on Thompson sampling. Experimental results show that both types of uncertainty may vastly improve learning in domains with a strong exploration challenge.Comment: Deep Reinforcement Learning Symposium @ Conference on Neural Information Processing Systems (NIPS) 201

    Automatic Curriculum Learning For Deep RL: A Short Survey

    Full text link
    Automatic Curriculum Learning (ACL) has become a cornerstone of recent successes in Deep Reinforcement Learning (DRL).These methods shape the learning trajectories of agents by challenging them with tasks adapted to their capacities. In recent years, they have been used to improve sample efficiency and asymptotic performance, to organize exploration, to encourage generalization or to solve sparse reward problems, among others. The ambition of this work is dual: 1) to present a compact and accessible introduction to the Automatic Curriculum Learning literature and 2) to draw a bigger picture of the current state of the art in ACL to encourage the cross-breeding of existing concepts and the emergence of new ideas.Comment: Accepted at IJCAI202

    Online Decision Making in Crowdsourcing Markets: Theoretical Challenges (Position Paper)

    Full text link
    Over the past decade, crowdsourcing has emerged as a cheap and efficient method of obtaining solutions to simple tasks that are difficult for computers to solve but possible for humans. The popularity and promise of crowdsourcing markets has led to both empirical and theoretical research on the design of algorithms to optimize various aspects of these markets, such as the pricing and assignment of tasks. Much of the existing theoretical work on crowdsourcing markets has focused on problems that fall into the broad category of online decision making; task requesters or the crowdsourcing platform itself make repeated decisions about prices to set, workers to filter out, problems to assign to specific workers, or other things. Often these decisions are complex, requiring algorithms that learn about the distribution of available tasks or workers over time and take into account the strategic (or sometimes irrational) behavior of workers. As human computation grows into its own field, the time is ripe to address these challenges in a principled way. However, it appears very difficult to capture all pertinent aspects of crowdsourcing markets in a single coherent model. In this paper, we reflect on the modeling issues that inhibit theoretical research on online decision making for crowdsourcing, and identify some steps forward. This paper grew out of the authors' own frustration with these issues, and we hope it will encourage the community to attempt to understand, debate, and ultimately address them. The authors welcome feedback for future revisions of this paper

    When Simple Exploration is Sample Efficient: Identifying Sufficient Conditions for Random Exploration to Yield PAC RL Algorithms

    Full text link
    Efficient exploration is one of the key challenges for reinforcement learning (RL) algorithms. Most traditional sample efficiency bounds require strategic exploration. Recently many deep RL algorithms with simple heuristic exploration strategies that have few formal guarantees, achieve surprising success in many domains. These results pose an important question about understanding these exploration strategies such as ee-greedy, as well as understanding what characterize the difficulty of exploration in MDPs. In this work we propose problem specific sample complexity bounds of QQ learning with random walk exploration that rely on several structural properties. We also link our theoretical results to some empirical benchmark domains, to illustrate if our bound gives polynomial sample complexity in these domains and how that is related with the empirical performance.Comment: Appeared in The 14th European Workshop on Reinforcement Learning (EWRL), 201

    Reinforcement Learning with Probabilistic Guarantees for Autonomous Driving

    Full text link
    Designing reliable decision strategies for autonomous urban driving is challenging. Reinforcement learning (RL) has been used to automatically derive suitable behavior in uncertain environments, but it does not provide any guarantee on the performance of the resulting policy. We propose a generic approach to enforce probabilistic guarantees on an RL agent. An exploration strategy is derived prior to training that constrains the agent to choose among actions that satisfy a desired probabilistic specification expressed with linear temporal logic (LTL). Reducing the search space to policies satisfying the LTL formula helps training and simplifies reward design. This paper outlines a case study of an intersection scenario involving multiple traffic participants. The resulting policy outperforms a rule-based heuristic approach in terms of efficiency while exhibiting strong guarantees on safety

    Active Contextual Entropy Search

    Full text link
    Contextual policy search allows adapting robotic movement primitives to different situations. For instance, a locomotion primitive might be adapted to different terrain inclinations or desired walking speeds. Such an adaptation is often achievable by modifying a small number of hyperparameters. However, learning, when performed on real robotic systems, is typically restricted to a small number of trials. Bayesian optimization has recently been proposed as a sample-efficient means for contextual policy search that is well suited under these conditions. In this work, we extend entropy search, a variant of Bayesian optimization, such that it can be used for active contextual policy search where the agent selects those tasks during training in which it expects to learn the most. Empirical results in simulation suggest that this allows learning successful behavior with less trials.Comment: Corrected title of reference #1

    Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization

    Full text link
    Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select configurations, we focus on speeding up random search through adaptive resource allocation and early-stopping. We formulate hyperparameter optimization as a pure-exploration non-stochastic infinite-armed bandit problem where a predefined resource like iterations, data samples, or features is allocated to randomly sampled configurations. We introduce a novel algorithm, Hyperband, for this framework and analyze its theoretical properties, providing several desirable guarantees. Furthermore, we compare Hyperband with popular Bayesian optimization methods on a suite of hyperparameter optimization problems. We observe that Hyperband can provide over an order-of-magnitude speedup over our competitor set on a variety of deep-learning and kernel-based learning problems.Comment: Changes: - Updated to JMLR versio

    Langevin Dynamics with Continuous Tempering for Training Deep Neural Networks

    Full text link
    Minimizing non-convex and high-dimensional objective functions is challenging, especially when training modern deep neural networks. In this paper, a novel approach is proposed which divides the training process into two consecutive phases to obtain better generalization performance: Bayesian sampling and stochastic optimization. The first phase is to explore the energy landscape and to capture the "fat" modes; and the second one is to fine-tune the parameter learned from the first phase. In the Bayesian learning phase, we apply continuous tempering and stochastic approximation into the Langevin dynamics to create an efficient and effective sampler, in which the temperature is adjusted automatically according to the designed "temperature dynamics". These strategies can overcome the challenge of early trapping into bad local minima and have achieved remarkable improvements in various types of neural networks as shown in our theoretical analysis and empirical experiments

    Batch Policy Learning under Constraints

    Get PDF
    When learning policies for real-world domains, two important questions arise: (i) how to efficiently use pre-collected off-policy, non-optimal behavior data; and (ii) how to mediate among different competing objectives and constraints. We thus study the problem of batch policy learning under multiple constraints, and offer a systematic solution. We first propose a flexible meta-algorithm that admits any batch reinforcement learning and online learning procedure as subroutines. We then present a specific algorithmic instantiation and provide performance guarantees for the main objective and all constraints. To certify constraint satisfaction, we propose a new and simple method for off-policy policy evaluation (OPE) and derive PAC-style bounds. Our algorithm achieves strong empirical results in different domains, including in a challenging problem of simulated car driving subject to multiple constraints such as lane keeping and smooth driving. We also show experimentally that our OPE method outperforms other popular OPE techniques on a standalone basis, especially in a high-dimensional setting

    Taming Non-stationary Bandits: A Bayesian Approach

    Full text link
    We consider the multi armed bandit problem in non-stationary environments. Based on the Bayesian method, we propose a variant of Thompson Sampling which can be used in both rested and restless bandit scenarios. Applying discounting to the parameters of prior distribution, we describe a way to systematically reduce the effect of past observations. Further, we derive the exact expression for the probability of picking sub-optimal arms. By increasing the exploitative value of Bayes' samples, we also provide an optimistic version of the algorithm. Extensive empirical analysis is conducted under various scenarios to validate the utility of proposed algorithms. A comparison study with various state-of-the-arm algorithms is also included.Comment: Submitted to NIPS 201
    • …
    corecore