22,082 research outputs found

    Optical tomography: Image improvement using mixed projection of parallel and fan beam modes

    Get PDF
    Mixed parallel and fan beam projection is a technique used to increase the quality images. This research focuses on enhancing the image quality in optical tomography. Image quality can be defined by measuring the Peak Signal to Noise Ratio (PSNR) and Normalized Mean Square Error (NMSE) parameters. The findings of this research prove that by combining parallel and fan beam projection, the image quality can be increased by more than 10%in terms of its PSNR value and more than 100% in terms of its NMSE value compared to a single parallel beam

    Relation Discovery from Web Data for Competency Management

    Get PDF
    This paper describes a technique for automatically discovering associations between people and expertise from an analysis of very large data sources (including web pages, blogs and emails), using a family of algorithms that perform accurate named-entity recognition, assign different weights to terms according to an analysis of document structure, and access distances between terms in a document. My contribution is to add a social networking approach called BuddyFinder which relies on associations within a large enterprise-wide "buddy list" to help delimit the search space and also to provide a form of 'social triangulation' whereby the system can discover documents from your colleagues that contain pertinent information about you. This work has been influential in the information retrieval community generally, as it is the basis of a landmark system that achieved overall first place in every category in the Enterprise Search Track of TREC2006

    Ranking Archived Documents for Structured Queries on Semantic Layers

    Full text link
    Archived collections of documents (like newspaper and web archives) serve as important information sources in a variety of disciplines, including Digital Humanities, Historical Science, and Journalism. However, the absence of efficient and meaningful exploration methods still remains a major hurdle in the way of turning them into usable sources of information. A semantic layer is an RDF graph that describes metadata and semantic information about a collection of archived documents, which in turn can be queried through a semantic query language (SPARQL). This allows running advanced queries by combining metadata of the documents (like publication date) and content-based semantic information (like entities mentioned in the documents). However, the results returned by such structured queries can be numerous and moreover they all equally match the query. In this paper, we deal with this problem and formalize the task of "ranking archived documents for structured queries on semantic layers". Then, we propose two ranking models for the problem at hand which jointly consider: i) the relativeness of documents to entities, ii) the timeliness of documents, and iii) the temporal relations among the entities. The experimental results on a new evaluation dataset show the effectiveness of the proposed models and allow us to understand their limitation

    WISER: A Semantic Approach for Expert Finding in Academia based on Entity Linking

    Full text link
    We present WISER, a new semantic search engine for expert finding in academia. Our system is unsupervised and it jointly combines classical language modeling techniques, based on text evidences, with the Wikipedia Knowledge Graph, via entity linking. WISER indexes each academic author through a novel profiling technique which models her expertise with a small, labeled and weighted graph drawn from Wikipedia. Nodes in this graph are the Wikipedia entities mentioned in the author's publications, whereas the weighted edges express the semantic relatedness among these entities computed via textual and graph-based relatedness functions. Every node is also labeled with a relevance score which models the pertinence of the corresponding entity to author's expertise, and is computed by means of a proper random-walk calculation over that graph; and with a latent vector representation which is learned via entity and other kinds of structural embeddings derived from Wikipedia. At query time, experts are retrieved by combining classic document-centric approaches, which exploit the occurrences of query terms in the author's documents, with a novel set of profile-centric scoring strategies, which compute the semantic relatedness between the author's expertise and the query topic via the above graph-based profiles. The effectiveness of our system is established over a large-scale experimental test on a standard dataset for this task. We show that WISER achieves better performance than all the other competitors, thus proving the effectiveness of modelling author's profile via our "semantic" graph of entities. Finally, we comment on the use of WISER for indexing and profiling the whole research community within the University of Pisa, and its application to technology transfer in our University

    The Effect of Negators, Modals, and Degree Adverbs on Sentiment Composition

    Full text link
    Negators, modals, and degree adverbs can significantly affect the sentiment of the words they modify. Often, their impact is modeled with simple heuristics; although, recent work has shown that such heuristics do not capture the true sentiment of multi-word phrases. We created a dataset of phrases that include various negators, modals, and degree adverbs, as well as their combinations. Both the phrases and their constituent content words were annotated with real-valued scores of sentiment association. Using phrasal terms in the created dataset, we analyze the impact of individual modifiers and the average effect of the groups of modifiers on overall sentiment. We find that the effect of modifiers varies substantially among the members of the same group. Furthermore, each individual modifier can affect sentiment words in different ways. Therefore, solutions based on statistical learning seem more promising than fixed hand-crafted rules on the task of automatic sentiment prediction.Comment: In Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA), San Diego, California, 201

    Effect of heuristics on serendipity in path-based storytelling with linked data

    Get PDF
    Path-based storytelling with Linked Data on the Web provides users the ability to discover concepts in an entertaining and educational way. Given a query context, many state-of-the-art pathfinding approaches aim at telling a story that coincides with the user's expectations by investigating paths over Linked Data on the Web. By taking into account serendipity in storytelling, we aim at improving and tailoring existing approaches towards better fitting user expectations so that users are able to discover interesting knowledge without feeling unsure or even lost in the story facts. To this end, we propose to optimize the link estimation between - and the selection of facts in a story by increasing the consistency and relevancy of links between facts through additional domain delineation and refinement steps. In order to address multiple aspects of serendipity, we propose and investigate combinations of weights and heuristics in paths forming the essential building blocks for each story. Our experimental findings with stories based on DBpedia indicate the improvements when applying the optimized algorithm

    Structural Regularities in Text-based Entity Vector Spaces

    Get PDF
    Entity retrieval is the task of finding entities such as people or products in response to a query, based solely on the textual documents they are associated with. Recent semantic entity retrieval algorithms represent queries and experts in finite-dimensional vector spaces, where both are constructed from text sequences. We investigate entity vector spaces and the degree to which they capture structural regularities. Such vector spaces are constructed in an unsupervised manner without explicit information about structural aspects. For concreteness, we address these questions for a specific type of entity: experts in the context of expert finding. We discover how clusterings of experts correspond to committees in organizations, the ability of expert representations to encode the co-author graph, and the degree to which they encode academic rank. We compare latent, continuous representations created using methods based on distributional semantics (LSI), topic models (LDA) and neural networks (word2vec, doc2vec, SERT). Vector spaces created using neural methods, such as doc2vec and SERT, systematically perform better at clustering than LSI, LDA and word2vec. When it comes to encoding entity relations, SERT performs best.Comment: ICTIR2017. Proceedings of the 3rd ACM International Conference on the Theory of Information Retrieval. 201
    corecore