15,944 research outputs found

    An empirical comparison of supervised machine learning techniques in bioinformatics

    Get PDF
    Research in bioinformatics is driven by the experimental data. Current biological databases are populated by vast amounts of experimental data. Machine learning has been widely applied to bioinformatics and has gained a lot of success in this research area. At present, with various learning algorithms available in the literature, researchers are facing difficulties in choosing the best method that can apply to their data. We performed an empirical study on 7 individual learning systems and 9 different combined methods on 4 different biological data sets, and provide some suggested issues to be considered when answering the following questions: (i) How does one choose which algorithm is best suitable for their data set? (ii) Are combined methods better than a single approach? (iii) How does one compare the effectiveness of a particular algorithm to the others

    Applicability of semi-supervised learning assumptions for gene ontology terms prediction

    Get PDF
    Gene Ontology (GO) is one of the most important resources in bioinformatics, aiming to provide a unified framework for the biological annotation of genes and proteins across all species. Predicting GO terms is an essential task for bioinformatics, but the number of available labelled proteins is in several cases insufficient for training reliable machine learning classifiers. Semi-supervised learning methods arise as a powerful solution that explodes the information contained in unlabelled data in order to improve the estimations of traditional supervised approaches. However, semi-supervised learning methods have to make strong assumptions about the nature of the training data and thus, the performance of the predictor is highly dependent on these assumptions. This paper presents an analysis of the applicability of semi-supervised learning assumptions over the specific task of GO terms prediction, focused on providing judgment elements that allow choosing the most suitable tools for specific GO terms. The results show that semi-supervised approaches significantly outperform the traditional supervised methods and that the highest performances are reached when applying the cluster assumption. Besides, it is experimentally demonstrated that cluster and manifold assumptions are complimentary to each other and an analysis of which GO terms can be more prone to be correctly predicted with each assumption, is provided.Postprint (published version
    corecore