51,252 research outputs found

    Copula Calibration

    Get PDF
    We propose notions of calibration for probabilistic forecasts of general multivariate quantities. Probabilistic copula calibration is a natural analogue of probabilistic calibration in the univariate setting. It can be assessed empirically by checking for the uniformity of the copula probability integral transform (CopPIT), which is invariant under coordinate permutations and coordinatewise strictly monotone transformations of the predictive distribution and the outcome. The CopPIT histogram can be interpreted as a generalization and variant of the multivariate rank histogram, which has been used to check the calibration of ensemble forecasts. Climatological copula calibration is an analogue of marginal calibration in the univariate setting. Methods and tools are illustrated in a simulation study and applied to compare raw numerical model and statistically postprocessed ensemble forecasts of bivariate wind vectors

    Ensemble model output statistics for wind vectors

    Full text link
    A bivariate ensemble model output statistics (EMOS) technique for the postprocessing of ensemble forecasts of two-dimensional wind vectors is proposed, where the postprocessed probabilistic forecast takes the form of a bivariate normal probability density function. The postprocessed means and variances of the wind vector components are linearly bias-corrected versions of the ensemble means and ensemble variances, respectively, and the conditional correlation between the wind components is represented by a trigonometric function of the ensemble mean wind direction. In a case study on 48-hour forecasts of wind vectors over the North American Pacific Northwest with the University of Washington Mesoscale Ensemble, the bivariate EMOS density forecasts were calibrated and sharp, and showed considerable improvement over the raw ensemble and reference forecasts, including ensemble copula coupling

    Multi-path Probabilistic Available Bandwidth Estimation through Bayesian Active Learning

    Full text link
    Knowing the largest rate at which data can be sent on an end-to-end path such that the egress rate is equal to the ingress rate with high probability can be very practical when choosing transmission rates in video streaming or selecting peers in peer-to-peer applications. We introduce probabilistic available bandwidth, which is defined in terms of ingress rates and egress rates of traffic on a path, rather than in terms of capacity and utilization of the constituent links of the path like the standard available bandwidth metric. In this paper, we describe a distributed algorithm, based on a probabilistic graphical model and Bayesian active learning, for simultaneously estimating the probabilistic available bandwidth of multiple paths through a network. Our procedure exploits the fact that each packet train provides information not only about the path it traverses, but also about any path that shares a link with the monitored path. Simulations and PlanetLab experiments indicate that this process can dramatically reduce the number of probes required to generate accurate estimates

    Bayesian optimisation for likelihood-free cosmological inference

    Full text link
    Many cosmological models have only a finite number of parameters of interest, but a very expensive data-generating process and an intractable likelihood function. We address the problem of performing likelihood-free Bayesian inference from such black-box simulation-based models, under the constraint of a very limited simulation budget (typically a few thousand). To do so, we adopt an approach based on the likelihood of an alternative parametric model. Conventional approaches to approximate Bayesian computation such as likelihood-free rejection sampling are impractical for the considered problem, due to the lack of knowledge about how the parameters affect the discrepancy between observed and simulated data. As a response, we make use of a strategy previously developed in the machine learning literature (Bayesian optimisation for likelihood-free inference, BOLFI), which combines Gaussian process regression of the discrepancy to build a surrogate surface with Bayesian optimisation to actively acquire training data. We extend the method by deriving an acquisition function tailored for the purpose of minimising the expected uncertainty in the approximate posterior density, in the parametric approach. The resulting algorithm is applied to the problems of summarising Gaussian signals and inferring cosmological parameters from the Joint Lightcurve Analysis supernovae data. We show that the number of required simulations is reduced by several orders of magnitude, and that the proposed acquisition function produces more accurate posterior approximations, as compared to common strategies.Comment: 16+9 pages, 12 figures. Matches PRD published version after minor modification
    corecore