393 research outputs found

    MDL Denoising Revisited

    Full text link
    We refine and extend an earlier MDL denoising criterion for wavelet-based denoising. We start by showing that the denoising problem can be reformulated as a clustering problem, where the goal is to obtain separate clusters for informative and non-informative wavelet coefficients, respectively. This suggests two refinements, adding a code-length for the model index, and extending the model in order to account for subband-dependent coefficient distributions. A third refinement is derivation of soft thresholding inspired by predictive universal coding with weighted mixtures. We propose a practical method incorporating all three refinements, which is shown to achieve good performance and robustness in denoising both artificial and natural signals.Comment: Submitted to IEEE Transactions on Information Theory, June 200

    Scalable Image Retrieval by Sparse Product Quantization

    Get PDF
    Fast Approximate Nearest Neighbor (ANN) search technique for high-dimensional feature indexing and retrieval is the crux of large-scale image retrieval. A recent promising technique is Product Quantization, which attempts to index high-dimensional image features by decomposing the feature space into a Cartesian product of low dimensional subspaces and quantizing each of them separately. Despite the promising results reported, their quantization approach follows the typical hard assignment of traditional quantization methods, which may result in large quantization errors and thus inferior search performance. Unlike the existing approaches, in this paper, we propose a novel approach called Sparse Product Quantization (SPQ) to encoding the high-dimensional feature vectors into sparse representation. We optimize the sparse representations of the feature vectors by minimizing their quantization errors, making the resulting representation is essentially close to the original data in practice. Experiments show that the proposed SPQ technique is not only able to compress data, but also an effective encoding technique. We obtain state-of-the-art results for ANN search on four public image datasets and the promising results of content-based image retrieval further validate the efficacy of our proposed method.Comment: 12 page

    Proceedings of the Fifth Workshop on Information Theoretic Methods in Science and Engineering

    Get PDF
    These are the online proceedings of the Fifth Workshop on Information Theoretic Methods in Science and Engineering (WITMSE), which was held in the Trippenhuis, Amsterdam, in August 2012

    Scalable Nonlinear Embeddings for Semantic Category-based Image Retrieval

    Full text link
    We propose a novel algorithm for the task of supervised discriminative distance learning by nonlinearly embedding vectors into a low dimensional Euclidean space. We work in the challenging setting where supervision is with constraints on similar and dissimilar pairs while training. The proposed method is derived by an approximate kernelization of a linear Mahalanobis-like distance metric learning algorithm and can also be seen as a kernel neural network. The number of model parameters and test time evaluation complexity of the proposed method are O(dD) where D is the dimensionality of the input features and d is the dimension of the projection space - this is in contrast to the usual kernelization methods as, unlike them, the complexity does not scale linearly with the number of training examples. We propose a stochastic gradient based learning algorithm which makes the method scalable (w.r.t. the number of training examples), while being nonlinear. We train the method with up to half a million training pairs of 4096 dimensional CNN features. We give empirical comparisons with relevant baselines on seven challenging datasets for the task of low dimensional semantic category based image retrieval.Comment: ICCV 2015 preprin
    • …
    corecore