747 research outputs found

    LSTM Networks for Detection and Classification of Anomalies in Raw Sensor Data

    Get PDF
    In order to ensure the validity of sensor data, it must be thoroughly analyzed for various types of anomalies. Traditional machine learning methods of anomaly detections in sensor data are based on domain-specific feature engineering. A typical approach is to use domain knowledge to analyze sensor data and manually create statistics-based features, which are then used to train the machine learning models to detect and classify the anomalies. Although this methodology is used in practice, it has a significant drawback due to the fact that feature extraction is usually labor intensive and requires considerable effort from domain experts. An alternative approach is to use deep learning algorithms. Research has shown that modern deep neural networks are very effective in automated extraction of abstract features from raw data in classification tasks. Long short-term memory networks, or LSTMs in short, are a special kind of recurrent neural networks that are capable of learning long-term dependencies. These networks have proved to be especially effective in the classification of raw time-series data in various domains. This dissertation systematically investigates the effectiveness of the LSTM model for anomaly detection and classification in raw time-series sensor data. As a proof of concept, this work used time-series data of sensors that measure blood glucose levels. A large number of time-series sequences was created based on a genuine medical diabetes dataset. Anomalous series were constructed by six methods that interspersed patterns of common anomaly types in the data. An LSTM network model was trained with k-fold cross-validation on both anomalous and valid series to classify raw time-series sequences into one of seven classes: non-anomalous, and classes corresponding to each of the six anomaly types. As a control, the accuracy of detection and classification of the LSTM was compared to that of four traditional machine learning classifiers: support vector machines, Random Forests, naive Bayes, and shallow neural networks. The performance of all the classifiers was evaluated based on nine metrics: precision, recall, and the F1-score, each measured in micro, macro and weighted perspective. While the traditional models were trained on vectors of features, derived from the raw data, that were based on knowledge of common sources of anomaly, the LSTM was trained on raw time-series data. Experimental results indicate that the performance of the LSTM was comparable to the best traditional classifiers by achieving 99% accuracy in all 9 metrics. The model requires no labor-intensive feature engineering, and the fine-tuning of its architecture and hyper-parameters can be made in a fully automated way. This study, therefore, finds LSTM networks an effective solution to anomaly detection and classification in sensor data

    ExplainIt! -- A declarative root-cause analysis engine for time series data (extended version)

    Full text link
    We present ExplainIt!, a declarative, unsupervised root-cause analysis engine that uses time series monitoring data from large complex systems such as data centres. ExplainIt! empowers operators to succinctly specify a large number of causal hypotheses to search for causes of interesting events. ExplainIt! then ranks these hypotheses, reducing the number of causal dependencies from hundreds of thousands to a handful for human understanding. We show how a declarative language, such as SQL, can be effective in declaratively enumerating hypotheses that probe the structure of an unknown probabilistic graphical causal model of the underlying system. Our thesis is that databases are in a unique position to enable users to rapidly explore the possible causal mechanisms in data collected from diverse sources. We empirically demonstrate how ExplainIt! had helped us resolve over 30 performance issues in a commercial product since late 2014, of which we discuss a few cases in detail.Comment: SIGMOD Industry Track 201

    Integrating genetics and epigenetics in breast cancer: biological insights, experimental, computational methods and therapeutic potential

    Get PDF

    An outlier detection method to improve gathered datasets for network behavior analysis in IoT

    Get PDF
    Outlier detection is a subfield of data mining to determine data points that notably deviate from the rest of a dataset. Their deviation can indicate that these data points are generated by errors and should therefore be removed or repaired. There are many reasons for outliers in a network dataset such as human or instrument errors, noise or system behavior changes. On the other side, Network Behavior Analysis (NBA) is a way to monitor traffic and recognize unusual actions in a network. Analyzing data trends in NBA methods is a common way to interpret network situation. Outliers can deviate and produce erroneous trends that influence the results of the NBA methods. This paper presents an approach that based on a method for trend detection divides the data set into subsets where contextual outliers are discovered. The outliers can then be removed to have a clear dataset that better shows the network behavior when using NBA methods. Increasing the accuracy and reliability are the goals of our method. We compare the proposed method with the Hampel method on simulated IoT network data.publishedVersio

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Automated anomaly recognition in real time data streams for oil and gas industry.

    Get PDF
    There is a growing demand for computer-assisted real-time anomaly detection - from the identification of suspicious activities in cyber security, to the monitoring of engineering data for various applications across the oil and gas, automotive and other engineering industries. To reduce the reliance on field experts' knowledge for identification of these anomalies, this thesis proposes a deep-learning anomaly-detection framework that can help to create an effective real-time condition-monitoring framework. The aim of this research is to develop a real-time and re-trainable generic anomaly-detection framework, which is capable of predicting and identifying anomalies with a high level of accuracy - even when a specific anomalous event has no precedent. Machine-based condition monitoring is preferable in many practical situations where fast data analysis is required, and where there are harsh climates or otherwise life-threatening environments. For example, automated conditional monitoring systems are ideal in deep sea exploration studies, offshore installations and space exploration. This thesis firstly reviews studies about anomaly detection using machine learning. It then adopts the best practices from those studies in order to propose a multi-tiered framework for anomaly detection with heterogeneous input sources, which can deal with unseen anomalies in a real-time dynamic problem environment. The thesis then applies the developed generic multi-tiered framework to two fields of engineering: data analysis and malicious cyber attack detection. Finally, the framework is further refined based on the outcomes of those case studies and is used to develop a secure cross-platform API, capable of re-training and data classification on a real-time data feed
    corecore