164 research outputs found

    Portable compiler optimisation across embedded programs and microarchitectures using machine learning

    Get PDF
    Building an optimising compiler is a difficult and time consuming task which must be repeated for each generation of a microprocessor. As the underlying microarchitecture changes from one generation to the next, the compiler must be retuned to optimise specifically for that new system. It may take several releases of the compiler to effectively exploit a processor’s performance potential, by which time a new generation has appeared and the process starts again. We address this challenge by developing a portable optimising compiler. Our approach employs machine learning to automatically learn the best optimisations to apply for any new program on a new microarchitectural configuration. It achieves this by learning a model off-line which maps a microarchitecture description plus the hardware counters from a single run of the program to the best compiler optimisation passes. Our compiler gains 67 % of the maximum speedup obtainable by an iterative compiler search using 1000 evaluations. We obtain, on average, a 1.16x speedup over the highest default optimisation level across an entire microarchitecture configuration space, achieving a 4.3x speedup in the best case. We demonstrate the robustness of this technique by applying it to an extended microarchitectural space where we achieve comparable performance

    Using machine-learning to efficiently explore the architecture/compiler co-design space

    Get PDF
    Designing new microprocessors is a time consuming task. Architects rely on slow simulators to evaluate performance and a significant proportion of the design space has to be explored before an implementation is chosen. This process becomes more time consuming when compiler optimisations are also considered. Once the architecture is selected, a new compiler must be developed and tuned. What is needed are techniques that can speedup this whole process and develop a new optimising compiler automatically. This thesis proposes the use of machine-learning techniques to address architecture/compiler co-design. First, two performance models are developed and are used to efficiently search the design space of amicroarchitecture. These models accurately predict performance metrics such as cycles or energy, or a tradeoff of the two. The first model uses just 32 simulations to model the entire design space of new applications, an order of magnitude fewer than state-of-the-art techniques. The second model addresses offline training costs and predicts the average behaviour of a complete benchmark suite. Compared to state-of-the-art, it needs five times fewer training simulations when applied to the SPEC CPU 2000 and MiBench benchmark suites. Next, the impact of compiler optimisations on the design process is considered. This has the potential to change the shape of the design space and improve performance significantly. A new model is proposed that predicts the performance obtainable by an optimising compiler for any design point, without having to build the compiler. Compared to the state-of-the-art, this model achieves a significantly lower error rate. Finally, a new machine-learning optimising compiler is presented that predicts the best compiler optimisation setting for any new program on any new microarchitecture. It achieves an average speedup of 1.14x over the default best gcc optimisation level. This represents 61% of the maximum speedup available, using just one profile run of the application

    Efficient design space exploration of embedded microprocessors

    Get PDF

    Mechanistic analytical modeling of superscalar in-order processor performance

    Get PDF
    Superscalar in-order processors form an interesting alternative to out-of-order processors because of their energy efficiency and lower design complexity. However, despite the reduced design complexity, it is nontrivial to get performance estimates or insight in the application--microarchitecture interaction without running slow, detailed cycle-level simulations, because performance highly depends on the order of instructions within the application’s dynamic instruction stream, as in-order processors stall on interinstruction dependences and functional unit contention. To limit the number of detailed cycle-level simulations needed during design space exploration, we propose a mechanistic analytical performance model that is built from understanding the internal mechanisms of the processor. The mechanistic performance model for superscalar in-order processors is shown to be accurate with an average performance prediction error of 3.2% compared to detailed cycle-accurate simulation using gem5. We also validate the model against hardware, using the ARM Cortex-A8 processor and show that it is accurate within 10% on average. We further demonstrate the usefulness of the model through three case studies: (1) design space exploration, identifying the optimum number of functional units for achieving a given performance target; (2) program--machine interactions, providing insight into microarchitecture bottlenecks; and (3) compiler--architecture interactions, visualizing the impact of compiler optimizations on performance

    Software/Hardware Co-Design to Improve Productivity, Portability, and Performance of Loop-Task Parallel Applications

    Full text link
    Computer architects are increasingly turning to programmable accelerators tailored for narrower classes of applications in order to achieve high performance and energy efficiency. A continuing challenge with accelerators is enabling the programmer to easily extract maximum performance without intimate knowledge of the underlying microarchitecture. It is important to consider productivity and portability, in addition to performance, as first-class metrics when developing and evaluating modern computing platforms. Software-centric approaches to achieving 3P computing platforms are compelling, but sacrifice efficiency and flexibility by hiding parallel abstractions from hardware and limiting the scope of the application domain. This thesis proposes a new software/hardware co-design approach to achieving 3P platforms, called the loop-task accelerator (LTA) platform, that provides high productivity and portability without sacrificing performance or efficiency across a wide range of applications. The LTA platform addresses the weaknesses of existing approaches that are identified through detailed experimentation with and analysis of modern application development. Discussion of an early attempt at a hardware-centric approach to achieving 3P platforms provides insight into area-efficient accelerator designs and highlights the need for innovations in both software and hardware. The LTA platform focuses on exploiting loop-task parallelism by exposing loop-tasks as a common parallel abstraction at the programming API, runtime, ISA, and microarchitectural levels. The LTA programming API uses the parallel_for construct to express loop-tasks that can be exploited both across cores and within a core, the LTA runtime distributes loop-tasks across cores, and a new xpfor instruction explicitly encodes loop-tasks as functions applied to a range of loop iterations. This thesis introduces a novel task-coupling taxonomy that captures how tasks can be coupled in both space and time. The LTA engine template can be configured at design time with variable spatial and temporal task coupling to accelerate the execution of both regular and irregular loop-tasks within a core. The LTA platform is evaluated with respect to the 3P’s using a vertically integrated research methodology. Compared to an in-order multi-core baseline, the LTA platform yields average improvements of 5.5× in raw performance, 2.5× in performance per area, and 1.2× in energy efficiency, while offering high productivity and portability

    Ranking commercial machines through data transposition

    Get PDF
    The performance numbers reported by benchmarking consortia and corporations provide little or no insight into the performance of applications of interest that are not part of the benchmark suite. This paper describes data transposition, a novel methodology for addressing this ubiquitous benchmarking problem. Data transposition predicts the performance for an application of interest on a target machine based on its performance similarities with the industry-standard benchmarks on a limited number of predictive machines. The key idea of data transposition is to exploit machine similarity rather than workload similarity as done in prior work, i.e., data transposition identifies a predictive machine that is most similar to the target machine of interest for predicting performance for the application of interest. We demonstrate the accuracy and effectiveness of data transposition using the SPEC CPU2006 benchmarks and a set of 117 commercial machines. We report that the machine ranking obtained through data transposition correlates well with the machine ranking obtained using measured performance numbers (average correlation coefficient of 0.93). Not only does data transposition improve average correlation, we also demonstrate that data transposition is more robust towards outlier benchmarks, i.e., the worst-case correlation coefficient improves from 0.59 by prior art to 0.71. More concretely, using data transposition to predict the top-1 machine for an application of interest leads to the best performing machine for most workloads (average deficiency of 1.2% and max deficiency of 24.8% for one benchmark), whereas prior work leads to deficiencies over 100% for some workloads
    • 

    corecore