206 research outputs found

    Fully Automated Fact Checking Using External Sources

    Full text link
    Given the constantly growing proliferation of false claims online in recent years, there has been also a growing research interest in automatically distinguishing false rumors from factually true claims. Here, we propose a general-purpose framework for fully-automatic fact checking using external sources, tapping the potential of the entire Web as a knowledge source to confirm or reject a claim. Our framework uses a deep neural network with LSTM text encoding to combine semantic kernels with task-specific embeddings that encode a claim together with pieces of potentially-relevant text fragments from the Web, taking the source reliability into account. The evaluation results show good performance on two different tasks and datasets: (i) rumor detection and (ii) fact checking of the answers to a question in community question answering forums.Comment: RANLP-201

    A Weakly Supervised Propagation Model for Rumor Verification and Stance Detection with Multiple Instance Learning

    Full text link
    The diffusion of rumors on microblogs generally follows a propagation tree structure, that provides valuable clues on how an original message is transmitted and responded by users over time. Recent studies reveal that rumor detection and stance detection are two different but relevant tasks which can jointly enhance each other, e.g., rumors can be debunked by cross-checking the stances conveyed by their relevant microblog posts, and stances are also conditioned on the nature of the rumor. However, most stance detection methods require enormous post-level stance labels for training, which are labor-intensive given a large number of posts. Enlightened by Multiple Instance Learning (MIL) scheme, we first represent the diffusion of claims with bottom-up and top-down trees, then propose two tree-structured weakly supervised frameworks to jointly classify rumors and stances, where only the bag-level labels concerning claim's veracity are needed. Specifically, we convert the multi-class problem into a multiple MIL-based binary classification problem where each binary model focuses on differentiating a target stance or rumor type and other types. Finally, we propose a hierarchical attention mechanism to aggregate the binary predictions, including (1) a bottom-up or top-down tree attention layer to aggregate binary stances into binary veracity; and (2) a discriminative attention layer to aggregate the binary class into finer-grained classes. Extensive experiments conducted on three Twitter-based datasets demonstrate promising performance of our model on both claim-level rumor detection and post-level stance classification compared with state-of-the-art methods.Comment: Accepted by SIGIR 202
    corecore