185,973 research outputs found

    U-rank: Utility-oriented Learning to Rank with Implicit Feedback

    Get PDF
    Learning to rank with implicit feedback is one of the most important tasks in many real-world information systems where the objective is some specific utility, e.g., clicks and revenue. However, we point out that existing methods based on probabilistic ranking principle do not necessarily achieve the highest utility. To this end, we propose a novel ranking framework called U-rank that directly optimizes the expected utility of the ranking list. With a position-aware deep click-through rate prediction model, we address the attention bias considering both query-level and item-level features. Due to the item-specific attention bias modeling, the optimization for expected utility corresponds to a maximum weight matching on the item-position bipartite graph. We base the optimization of this objective in an efficient Lambdaloss framework, which is supported by both theoretical and empirical analysis. We conduct extensive experiments for both web search and recommender systems over three benchmark datasets and two proprietary datasets, where the performance gain of U-rank over state-of-the-arts is demonstrated. Moreover, our proposed U-rank has been deployed on a large-scale commercial recommender and a large improvement over the production baseline has been observed in an online A/B testing

    Theoretical Analysis on the Efficiency of Interleaved Comparisons

    Full text link
    This study presents a theoretical analysis on the efficiency of interleaving, an efficient online evaluation method for rankings. Although interleaving has already been applied to production systems, the source of its high efficiency has not been clarified in the literature. Therefore, this study presents a theoretical analysis on the efficiency of interleaving methods. We begin by designing a simple interleaving method similar to ordinary interleaving methods. Then, we explore a condition under which the interleaving method is more efficient than A/B testing and find that this is the case when users leave the ranking depending on the item's relevance, a typical assumption made in click models. Finally, we perform experiments based on numerical analysis and user simulation, demonstrating that the theoretical results are consistent with the empirical results.Comment: The 45th European Conference on Information Retrieval (ECIR2023

    Toward Understanding Privileged Features Distillation in Learning-to-Rank

    Full text link
    In learning-to-rank problems, a privileged feature is one that is available during model training, but not available at test time. Such features naturally arise in merchandised recommendation systems; for instance, "user clicked this item" as a feature is predictive of "user purchased this item" in the offline data, but is clearly not available during online serving. Another source of privileged features is those that are too expensive to compute online but feasible to be added offline. Privileged features distillation (PFD) refers to a natural idea: train a "teacher" model using all features (including privileged ones) and then use it to train a "student" model that does not use the privileged features. In this paper, we first study PFD empirically on three public ranking datasets and an industrial-scale ranking problem derived from Amazon's logs. We show that PFD outperforms several baselines (no-distillation, pretraining-finetuning, self-distillation, and generalized distillation) on all these datasets. Next, we analyze why and when PFD performs well via both empirical ablation studies and theoretical analysis for linear models. Both investigations uncover an interesting non-monotone behavior: as the predictive power of a privileged feature increases, the performance of the resulting student model initially increases but then decreases. We show the reason for the later decreasing performance is that a very predictive privileged teacher produces predictions with high variance, which lead to high variance student estimates and inferior testing performance.Comment: Accepted by NeurIPS 202

    Are Smell-Based Metrics Actually Useful in Effort-Aware Structural Change-Proneness Prediction? An Empirical Study

    Get PDF
    Bad code smells (also named as code smells) are symptoms of poor design choices in implementation. Existing studies empirically confirmed that the presence of code smells increases the likelihood of subsequent changes (i.e., change-proness). However, to the best of our knowledge, no prior studies have leveraged smell-based metrics to predict particular change type (i.e., structural changes). Moreover, when evaluating the effectiveness of smell-based metrics in structural change-proneness prediction, none of existing studies take into account of the effort inspecting those change-prone source code. In this paper, we consider five smell-based metrics for effort-aware structural change-proneness prediction and compare these metrics with a baseline of well-known CK metrics in predicting particular categories of change types. Specifically, we first employ univariate logistic regression to analyze the correlation between each smellbased metric and structural change-proneness. Then, we build multivariate prediction models to examine the effectiveness of smell-based metrics in effort-aware structural change-proneness prediction when used alone and used together with the baseline metrics, respectively. Our experiments are conducted on six Java open-source projects with up to 60 versions and results indicate that: (1) all smell-based metrics are significantly related to structural change-proneness, except metric ANS in hive and SCM in camel after removing confounding effect of file size; (2) in most cases, smell-based metrics outperform the baseline metrics in predicting structural change-proneness; and (3) when used together with the baseline metrics, the smell-based metrics are more effective to predict change-prone files with being aware of inspection effort

    Characterizing and modeling the dynamics of online popularity

    Full text link
    Online popularity has enormous impact on opinions, culture, policy, and profits. We provide a quantitative, large scale, temporal analysis of the dynamics of online content popularity in two massive model systems, the Wikipedia and an entire country's Web space. We find that the dynamics of popularity are characterized by bursts, displaying characteristic features of critical systems such as fat-tailed distributions of magnitude and inter-event time. We propose a minimal model combining the classic preferential popularity increase mechanism with the occurrence of random popularity shifts due to exogenous factors. The model recovers the critical features observed in the empirical analysis of the systems analyzed here, highlighting the key factors needed in the description of popularity dynamics.Comment: 5 pages, 4 figures. Modeling part detailed. Final version published in Physical Review Letter
    • …
    corecore