6,553 research outputs found

    Characterizing and Diagnosing Architectural Degeneration of Software Systems from Defect Perspective

    Get PDF
    The architecture of a software system is known to degrade as the system evolves over time due to change upon change, a phenomenon that is termed architectural degeneration. Previous research has focused largely on structural deviations of an architecture from its baseline. However, another angle to observe architectural degeneration is software defects, especially those that are architecturally related. Such an angle has not been scientifically explored until now. Here, we ask two relevant questions: (1) What do defects indicate about architectural degeneration? and (2) How can architectural degeneration be diagnosed from the defect perspective? To answer question (1), we conducted an exploratory case study analyzing defect data over six releases of a large legacy system (of size approximately 20 million source lines of code and age over 20 years). The relevant defects here are those that span multiple components in the system (called multiple-component defects - MCDs). This case study found that MCDs require more changes to fix and are more persistent across development phases and releases than other types of defects. To answer question (2), we developed an approach (called Diagnosing Architectural Degeneration - DAD) from the defect perspective, and validated it in another, confirmatory, case study involving three releases of a commercial system (of size over 1.5 million source lines of code and age over 13 years). This case study found that components of the system tend to persistently have an impact on architectural degeneration over releases. Especially, such impact of a few components is substantially greater than that of other components. These results are new and they add to the current knowledge on architectural degeneration. The key conclusions from these results are: (i) analysis of MCDs is a viable approach to characterizing architectural degeneration; and (ii) a method such as DAD can be developed for diagnosing architectural degeneration

    An Exploratory Study of Field Failures

    Get PDF
    Field failures, that is, failures caused by faults that escape the testing phase leading to failures in the field, are unavoidable. Improving verification and validation activities before deployment can identify and timely remove many but not all faults, and users may still experience a number of annoying problems while using their software systems. This paper investigates the nature of field failures, to understand to what extent further improving in-house verification and validation activities can reduce the number of failures in the field, and frames the need of new approaches that operate in the field. We report the results of the analysis of the bug reports of five applications belonging to three different ecosystems, propose a taxonomy of field failures, and discuss the reasons why failures belonging to the identified classes cannot be detected at design time but shall be addressed at runtime. We observe that many faults (70%) are intrinsically hard to detect at design-time

    An Exploratory Study of Field Failures

    Full text link
    Field failures, that is, failures caused by faults that escape the testing phase leading to failures in the field, are unavoidable. Improving verification and validation activities before deployment can identify and timely remove many but not all faults, and users may still experience a number of annoying problems while using their software systems. This paper investigates the nature of field failures, to understand to what extent further improving in-house verification and validation activities can reduce the number of failures in the field, and frames the need of new approaches that operate in the field. We report the results of the analysis of the bug reports of five applications belonging to three different ecosystems, propose a taxonomy of field failures, and discuss the reasons why failures belonging to the identified classes cannot be detected at design time but shall be addressed at runtime. We observe that many faults (70%) are intrinsically hard to detect at design-time

    Empirical analysis of software reliability

    Get PDF
    This thesis presents an empirical study of architecture-based software reliability based on large real case studies. It undoubtedly demonstrates the value of using open source software to empirically study software reliability. The major goal is to empirically analyze the applicability, adequacy and accuracy of architecture-based software reliability models. In both our studies we found evidence that the number of failures due to faults in more than one component is not insignificant. Consequently, existing models that make such simplifying assumptions must be improved to account for this phenomenon. This thesis\u27 contributions include developing automatic methods for efficient extraction of necessary data from the available repositories, and using this data to test how and when architecture-based software reliability models work. We study their limitations and ways to improve them. Our results show the importance of knowledge gained from the interaction between theoretical and empirical research

    Identifying Common Patterns and Unusual Dependencies in Faults, Failures and Fixes for Large-scale Safety-critical Software

    Get PDF
    As software evolves, becoming a more integral part of complex systems, modern society becomes more reliant on the proper functioning of such systems. However, the field of software quality assurance lacks detailed empirical studies from which best practices can be determined. The fundamental factors that contribute to software quality are faults, failures and fixes, and although some studies have considered specific aspects of each, comprehensive studies have been quite rare. Thus, the fact that we establish the cause-effect relationship between the fault(s) that caused individual failures, as well as the link to the fixes made to prevent the failures from (re)occurring appears to be a unique characteristic of our work. In particular, we analyze fault types, verification activities, severity levels, investigation effort, artifacts fixed, components fixed, and the effort required to implement fixes for a large industrial case study. The analysis includes descriptive statistics, statistical inference through formal hypothesis testing, and data mining. Some of the most interesting empirical results include (1) Contrary to popular belief, later life-cycle faults dominate as causes of failures. Furthermore, over 50% of high priority failures (e.g., post-release failures and safety-critical failures) were caused by coding faults. (2) 15% of failures led to fixes spread across multiple components and the spread was largely affected by the software architecture. (3) The amount of effort spent fixing faults associated with each failure was not uniformly distributed across failures; fixes with a greater spread across components and artifacts, required more effort. Overall, the work indicates that fault prevention and elimination efforts focused on later life cycle faults is essential as coding faults were the dominating cause of safety-critical failures and post-release failures. Further, statistical correlation and/or traditional data mining techniques show potential for assessment and prediction of the locations of fixes and the associated effort. By providing quantitative results and including statistical hypothesis testing, which is not yet a standard practice in software engineering, our work enriches the empirical knowledge needed to improve the state-of-the-art and practice in software quality assurance

    Are Multi-language Design Smells Fault-prone? An Empirical Study

    Full text link
    Nowadays, modern applications are developed using components written in different programming languages. These systems introduce several advantages. However, as the number of languages increases, so does the challenges related to the development and maintenance of these systems. In such situations, developers may introduce design smells (i.e., anti-patterns and code smells) which are symptoms of poor design and implementation choices. Design smells are defined as poor design and coding choices that can negatively impact the quality of a software program despite satisfying functional requirements. Studies on mono-language systems suggest that the presence of design smells affects code comprehension, thus making systems harder to maintain. However, these studies target only mono-language systems and do not consider the interaction between different programming languages. In this paper, we present an approach to detect multi-language design smells in the context of JNI systems. We then investigate the prevalence of those design smells. Specifically, we detect 15 design smells in 98 releases of nine open-source JNI projects. Our results show that the design smells are prevalent in the selected projects and persist throughout the releases of the systems. We observe that in the analyzed systems, 33.95% of the files involving communications between Java and C/C++ contains occurrences of multi-language design smells. Some kinds of smells are more prevalent than others, e.g., Unused Parameters, Too Much Scattering, Unused Method Declaration. Our results suggest that files with multi-language design smells can often be more associated with bugs than files without these smells, and that specific smells are more correlated to fault-proneness than others

    Animating the evolution of software

    Get PDF
    The use and development of open source software has increased significantly in the last decade. The high frequency of changes and releases across a distributed environment requires good project management tools in order to control the process adequately. However, even with these tools in place, the nature of the development and the fact that developers will often work on many other projects simultaneously, means that the developers are unlikely to have a clear picture of the current state of the project at any time. Furthermore, the poor documentation associated with many projects has a detrimental effect when encouraging new developers to contribute to the software. A typical version control repository contains a mine of information that is not always obvious and not easy to comprehend in its raw form. However, presenting this historical data in a suitable format by using software visualisation techniques allows the evolution of the software over a number of releases to be shown. This allows the changes that have been made to the software to be identified clearly, thus ensuring that the effect of those changes will also be emphasised. This then enables both managers and developers to gain a more detailed view of the current state of the project. The visualisation of evolving software introduces a number of new issues. This thesis investigates some of these issues in detail, and recommends a number of solutions in order to alleviate the problems that may otherwise arise. The solutions are then demonstrated in the definition of two new visualisations. These use historical data contained within version control repositories to show the evolution of the software at a number of levels of granularity. Additionally, animation is used as an integral part of both visualisations - not only to show the evolution by representing the progression of time, but also to highlight the changes that have occurred. Previously, the use of animation within software visualisation has been primarily restricted to small-scale, hand generated visualisations. However, this thesis shows the viability of using animation within software visualisation with automated visualisations on a large scale. In addition, evaluation of the visualisations has shown that they are suitable for showing the changes that have occurred in the software over a period of time, and subsequently how the software has evolved. These visualisations are therefore suitable for use by developers and managers involved with open source software. In addition, they also provide a basis for future research in evolutionary visualisations, software evolution and open source development

    Analysing Anti-patterns Static Relationships with Design Patterns

    Get PDF
    Anti-patterns are motifs that are usually thought to be good solutions tosome design or implementation problems, but back-fires badly when applied. Previousstudies have reported that anti-patterns make object oriented systems hard tomaintain. Anti-patterns motifs usually have dependencies with other classes in thesystem. In this paper, we propose to analyse these dependencies (with in particulardesign patterns) in order to understand how developers can maintain programscontaining anti-patterns. To the best of our knowledge, no substantial investigationof anti-pattern dependencies with design patterns has been done before. This paperpresents the results of a study that we performed on three different systems, ArgoUML,JFreeChart, and XercesJ, written in Java, and of size ranges from 1,191to 3,325 classes, to analyse the static relationships between anti-patterns and designpatterns. We found that these relationships (1) exist, but (2) are temporaryand (3) classes participating in such relationships are more change-prone but lessfault-prone than other anti-pattern classes

    An empirical study of social networks metrics in object-oriented software

    Get PDF
    We study the application to object-oriented software of new metrics, derived from Social Network Analysis. Social Networks metrics, as for instance, the EGO metrics, allow to identify the role of each single node in the information flow through the network, being related to software modules and their dependencies. These metrics are compared with other traditional software metrics, like the Chidamber-Kemerer suite, and software graph metrics. We examine the empirical distributions of all the metrics, bugs included, across the software modules of several releases of two large Java systems, Eclipse and Netbeans. We provide analytical distribution functions suitable for describing and studying the observed distributions. We study also correlations among metrics and bugs. We found that the empirical distributions systematically show fat-tails for all the metrics. Moreover, the various metric distributions look very similar and consistent across all system releases and are also very similar in both the studied systems. These features appear to be typical properties of these software metrics
    • …
    corecore