2,223 research outputs found

    Emergency Flight Planning for the Generalized Transport Model Aircraft with Left Wing Damage

    Get PDF
    A nontrivial fraction of aviation accidents are caused by in-flight damage or failures that reduce performance. Researchers are working to ensure future avionics recognize the impact of damage/failures and guide the aircraft to a safe landing. This thesis presents an end-to-end Adaptive Flight Planner (AFP) for such emergencies and applies it to a damage situation in which a Generalized Transport Model (GTM) aircraft loses a significant fraction of its left wingtip. Trimmed (non-accelerating) flight conditions define the post-damage/failure aircraft flight envelope. A landing site search algorithm is augmented to define the reachable landing footprint and to prioritize the feasible landing runways within this region. End-to-end landing trajectories are constructed as a sequence of trim states and corresponding transitions. An LQR-based PID nonlinear controller enables the damaged GTM aircraft to correctly track trajectory commands over trimmed flight and transition segments. A suite of emergency scenarios are used to evaluate AFP performance

    Emergency Flight Planning for a Generalized Transport Aircraft with Left Wing Damage

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77332/1/AIAA-2007-6873-998.pd

    The Emergency Landing Planner Experiment

    Get PDF
    In previous work, we described an Emergency Landing Planner (ELP) designed to assist pilots in choosing the best emergency landing site when damage or failures occur in an aircraft. In this paper, we briefly describe the system, but focus on the integration of this system into the cockpit of a 6 DOF full-motion simulator and a study designed to evaluate the ELP. We discuss the results of this study, the lessons learned, and some of the issues involved in advancing this work further

    Trim State Discovery for an Adaptive Flight Planner

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83601/1/AIAA-2010-416-783.pd

    An Experimental Study of the Effect of Transparency on Pilot Trust in the Emergency Landing Planner

    Get PDF
    This experimental study examined the effects of transparency (operationalized as increasing levels of explanation) on pilot trust of an automated emergency landing planner. A low-fidelity study was conducted where commercial pilots (N12) interacted with simulated recommendations from NASA's Emergency Landing Planner (ELP). These recommendations varied in their associated levels of transparency. Results indicated that trust in the ELP was influenced by the level of transparency within the human-machine interface of the ELP

    Comparing the Performance of Expert User Heuristics and an Integer Linear Program in Aircraft Carrier Deck Operations

    Get PDF
    Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human–automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative

    Evaluating Risk to People and Property for Aircraft Emergency Landing Planning

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143122/1/1.I010513.pd

    Intelligent Pilot Aids for Flight Re-Planning in Emergencies

    Get PDF
    Effective and safe control of an aircraft may be difficult or nearly impossible for a pilot following an unexpected system failure. Without prior training, the pilot must ascertain on the fly those changes in both manual control technique and procedures that will lead to a safe landing of the aircraft. Sophisticated techniques for determining the required control techniques are now available. Likewise, a body of literature on pilot decision making provides formalisms for examining how pilots approach discrete decisions framed as the selection between options. However, other aspects of behavior, such as the task of route planning and guidance, are not as well studied. Not only is the pilot faced with possible performance changes to the aircraft dynamics, but he or she is also tasked to create a plan of actions that will effectively take the aircraft down to a safe landing. In this plan, the many actions that the pilot can perform are closely intertwined with the trajectory of the aircraft, making it difficult to accurately predict the final outcome. Coupled with the vast number of potential actions to be taken, this problem may seem intractable. This is reflected in the lack of a pre-specified procedure capable of giving pilots the ability to find a resolution for this task. This report summarizes a multi-year effort to examine methods to aid pilots in planning an approach and arrival to an airport following an aircraft systems failure. Ultimately, we hypothesize that automatic assistance to pilots can be provided in real-time in the form of improving pilot control of a damaged aircraft and providing pilots with procedural directives suitable for critical flight conditions; such systems may also benefit pilot training and procedure design. To achieve this result, a systematic, comprehensive research program was followed, building on prior research. This approach included a pencil-and-paper study with airline pilots examining methods of representing a flight route in an immediately understandable manner, and in a manner that would allow the pilot to modify an automatically-generated route and/or detect any inappropriate elements in an automatically-generated route. Likewise, a flight simulator study examined different cockpit systems for the relative merits of providing pilots with any of a variety of automated functions for emergency flight planning. The results provide specific guidance for the design of such systems

    Military Application of Aerial Photogrammetry Mapping Assisted by Small Unmanned Air Vehicles

    Get PDF
    This research investigated the practical military applications of the photogrammetric methods using remote sensing assisted by small unmanned aerial vehicles (SUAVs). The research explored the feasibility of UAV aerial mapping in terms of the specific military purposes, focusing on the geolocational and measurement accuracy of the digital models, and image processing time. The research method involved experimental flight tests using low-cost Commercial off-the-shelf (COTS) components, sensors and image processing tools to study key features of the method required in military like location accuracy, time estimation, and measurement capability. Based on the results of the data analysis, two military applications are defined to justify the feasibility and utility of the methods. The first application is to assess the damage of an attacked military airfield using photogrammetric digital models. Using a hex-rotor test platform with Sony A6000 camera, georeferenced maps with 1 meter accuracy was produced and with sufficient resolution (about 1 cm/pixel) to identify foreign objects on the runway. The other case examines the utility and quality of the targeting system using geo-spatial data from reconstructed 3-Dimensional (3-D) photogrammetry models. By analyzing 3-D model, operable targeting under 1meter accuracy with only 5 percent error on distance, area, and volume wer
    • …
    corecore